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Abstract

In their paper on delineating boundaries from geo-
graphic data, Reinbacher et al. [9] use a recolouring
method to reclassify points so that the boundaries that
separate points of different colours become more reason-
able. They show that an iterative recolouring method
converges after a finite, but exponential, number of
steps. They also give, as an example, a triangulated
point set with a specified re-colouring sequence that
uses Ω(n2) recolourings. In this note we revisit this re-
colouring problem and obtain a matching O(n2) upper
bound.

1 Introduction

Given a set of planar points partitioned into red and
blue subsets, a red-blue separator is a boundary that
separates the red points from the blue ones. There has
been considerable investigation of methods for obtaining
such red-blue separating boundaries.

In his PhD thesis, Seara [10] , examines various means
for red-blue separation, including all feasible red-blue
separations by a line, by a strip , or by a wedge. For the
case of red-blue separation with the minimum perimeter
polygon the problem is known to be NP-hard [3, 1]. A
somewhat related topic is to obtain a balanced subdivi-
sion of red and blue points, that is, cells of the subdi-
vision contain a prescribed ratio of red and blue points.
Kaneko and Kano [4] give a comprehensive survey of
results pertaining to red and blue points in the plane,
including results on balanced subdivisions.

For some applications one is willing to reclassify
points by recolouring them so as to obtain a more rea-
sonable boundary. For example Chan [2] shows that
finding a red-blue separating line with the minimum
number of reclassified points takes O((n + k2) log k) ex-
pected time, where k is the number of recoloured points.

In Reinbacher et al. [9] a heuristic algorithm is pre-
sented for obtaining a better delineating boundary that
recolours points. The input is a triangulated set of n
planar red-blue points. A point p is recoloured when-
ever it is “surrounded” by points of the opposite colour.
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A surrounded point is realized when there is a contigu-
ous set of oppositely coloured neighbours of p, in the tri-
angulation, that span a radial angle greater than 180◦.
As the recolouring occurs in an iterative sequence it is
not clear that the process will ever come to an end.
However, Reinbacher et al. show that no sequence that
iteratively recolours surrounded points until no point is
surrounded will ever visit the exact same colouring of
the points more than once. Thus the maximum num-
ber of recolourings is bounded by the total number of
possible colourings which is 2n−1.

Recolouring problems have been studied before, in
some cases under different names. A recolouring-like
problem applied to distributed systems with fault prop-
agation has been examined by de la Noval et al. [6].
Previous work has been done on graphs where vertices
alternate between two states, and state changes corre-
spond to connections in the graph. Peleg and others
have studied synchronous state-changes that occur in
parallel, looking for initial configurations that make all
the vertices end up being in the same state [8]. In this
survey paper Peleg poses some open problems regarding
the study of asynchronous state-changes controlled by
a scheduler. This is a recolouring model that is similar
to the model discussed in this paper where the vertices
get recoloured one at a time following a given strategy.

Our results begin where Reinbacher et al. leave off.
Using some of their ideas we are able to obtain a O(n2)
upper bound for the number of recolourings.

In the next section of this paper we precisely describe
the recolouring problem. We also present some prelimi-
nary results obtained by Reinbacher et al. for their up-
per bound proof. We follow this in the subsequent sec-
tion with our new results ultimately obtaining a O(n2)
upper bound. The remainder of our paper discusses
some extensions of our results.

2 Preliminaries

We are given as input a set, S, of points in the plane
partitioned into, blue points and red points together
with a triangulation T of S. Recall that a triangulation
of a point set S is a collection of diagonals incident to
every point that partitions the interior of the convex
hull of S into triangles [7]. We assume throughout for

1



simplicity of exposition that the points are in general
position and no two points share the same x coordinate.
These assumptions pose no loss in generality as they can
be handled in a routine manner. We colour the edges
of T red if its two incident vertices are red, and blue if
its two incident vertices are blue. If one of the incident
vertices is red and the other is blue we mix the colours
to obtain a magenta edge.

The following definitions and lemmas follow, with a
few minor modifications, the paper of Reinbacher et al.
[9] .

Definition 1 Let the edges of T be coloured as above.
Then the magenta angle Φ is:

• 360◦, if p is only incident to magenta edges,

• 0◦, if p has at most one radially consecutive inci-
dent magenta edge,

• the maximum turning angle between two or more
radially consecutive incident magenta edges.

We use the notation pq to denote an edge of the trian-
gulation T . For descriptive reasons we sometimes write
qp to denote the same edge, however, the edges are not
directed so both pq and qp denote the same edge.

Definition 2 Consider an edge pq such that q is not
on the convex hull. We say that the edge qr is an
opposite edge of pq with respect to q if there is no edge
between qr and the ray from q that goes in the direction
opposite to p.

s
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Figure 1: Edges qr and qs are opposite to pq with re-
spect to q. However, qp is not opposite to sq with re-
spect to q.

Note that a non convex hull edge pq has two opposite
edges with respect to q. For example, in Figure 1 both

qr and qs are opposite to pq with respect to q. Further-
more observe the non symmetry of opposites, as qp is
not opposite with respect to q for the edge sq.

The strategy of reclassification by recolouring, re-
colours a surrounded point p. Recall that p is sur-
rounded when p has an associated magenta angle that
is greater than 180◦. The sequence in which surrounded
points are recoloured can be driven by a greedy ap-
proach, such as recolouring a point with the largest ma-
genta angle. Alternately we may recolour surrounded
points in an arbitrary manner. The recolouring process
stops when there are no more surrounded points.

Figure 2: A sequence of recolourings that always re-
colours a surrounded point that is in the most nested
triangle uses Ω(n2) recolourings.

Given a coloured triangulation of n points, Rein-
bacher et al. [9] show that the number of recolourings
is finite, in fact at most 2n − 1, independent of the re-
colouring strategy that is used. They also give an ex-
ample using a greedy recolouring scheme that uses at
most Ω(n2) recolourings. We reproduce this example in
Figure 2.

Definition 3 Let q be a surrounded point at the be-
ginning of iteration j of the recolouring sequence, then
there exists a maximal consecutive sequence of ma-
genta edges incident to q which we denote by Cq(j) =
(qp1, qp2, . . . , qpk). We say that the edges qp1 and qpk

are extremal in Cq(j).

Lemma 4 A surrounded point q on the convex hull of
S can be recoloured at most once.

Proof. The convex hull neighbours of q must be in
Cq(j) . Thus q takes on their colour. Now these neigh-
bours of q can no longer become surrounded. This im-
plies that q can be recoloured at most once. �
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Lemma 5 For an edge pq and any one of its opposite
edges with respect to q, qr, if point q is recoloured, then
q receives either the colour of p or the colour of r.

Proof. [9] Observe that either pq, qr, or both are in
Cq(j). Thus, if q is recoloured it receives the colour of
p or the colour of r. �

3 New Results

We begin with an analogue of Lemma 5 when applied
to an edge that is extremal in Cq(j).

Lemma 6 Let q be a surrounded point, at the beginning
of iteration j, such that pq is extremal in Cq(j) and qr
is any opposite edge of pq with respect to q. Then both
p and r are the same colour, that is not the colour of q.

Proof. Since q is surrounded and pq is extremal in
Cq(j) there is a radial span of more than 180◦ of ma-
genta edges incident to q beginning at pq and containing
qr. Thus qr is in Cq(j) and both p and r are the same
colour, that is not the colour of q. �

We introduce the notion of covering the triangulation
T by a set of simple paths, or chains.

Definition 7 A monotone chain is a path in the trian-
gulation, P = (p0, . . . , pm) ordered from left to right by
x-coordinate, such that

• p0 and pm are convex hull points

• either pipi+1 is opposite to pi−1pi with respect to
pi or pipi−1 is opposite to pi+1pi with respect to pi,
for all 0 < i < m.

Note that the convexity of the cells in the triangula-
tion ensures that for any non-convex hull triangulation
edge pq, there is always at least one opposite edge with
respect to an internal point q, qr, such that the vertices
p, q, r appear in x-coordinate order.

We can cover T using a set C of monotone chains so
that for every edge pq in T there is at least one monotone
chain in C that contains pq and qr an opposite edge
of pq with respect to q and ps an opposite edge of qp
with respect to p. It is easy to obtain such a cover
of T using O(n) monotone chains. For every edge e
we can obtain a monotone chain Pe that contains e,
and then by an iterative process inserts opposite edges
in both directions from e until a convex hull point is
reached. See Figure 3. Planarity implies that we have
O(n) chains in C. A similar type of covering of a planar
subdivision with monotone chains has been used before
by Lee and Preparata [5].

Definition 8 Let P = (p0, . . . , pm) be a monotone
chain. The colour-change number of the chain P , χ(P ),
is the number of times an adjacent pair of points on P
have different colours.

e
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Figure 3: Monotone chains corresponding to the edges
e1 (thick lines) and e2 (thick dashed lines)

Theorem 9 Given a set of red and blue points, S, to-
gether with a triangulation T of S, with |S| = n, we
show that any recolouring sequence will consist of at
most O(n2) recolourings.

Proof. Consider a cover C of monotone chains for the
set of edges of T , and let P be a monotone chain in
C. We count the number of recolourings that can occur
to points contained in P . We separate the count into
recolourings that occur at the convex hull points, and
recolourings that occur at internal points of P . From
Lemma 4 it follows that convex hull recolourings can
occur at most once per convex hull point. Lemma 5
implies that the colour change number χ(P ) cannot in-
crease when any internal point is recoloured.

We will see that for every recolouring of an internal
point, there is always at least one monotone chain whose
colour-change number decreases. Suppose that at some
step of the recolouring sequence the internal vertex q
changes colour. If the magenta angle of q is less than
360◦ we take an extremal magenta edge pq in Cq(j), oth-
erwise all edges incident to q are magenta and we choose
pq arbitrarily. An opposite edge of pq with respect to q,
qr, is in the monotone chain Ppq. Furthermore, vertex
r must be the same colour as p and different from q by
Lemma 6. Thus, the colour-change number of Ppq must
decrease by two. See Figure 4.

A broad analysis shows that initially the colour-
change number of any chain is at most n, and can only
be increased by two, at convex hull points, during the
entire recolouring sequence. As the total number of re-
colourings for all internal vertices decreases with every
recolouring, it is at most O(n2). That, together with the
linear number of possible recolourings for vertices on the
convex hull leads to O(n2) recolourings overall. �
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Figure 4: When q is re-coloured, the colour change num-
ber of the monotone chain Ppq (thick line) decreases by
two. Cq(j) is represented by the shaded area.

4 Extensions

Suppose that the points come in more than two colours.
We define the colour of an edge as the mixture of the
colours of its endpoints. In a multi-coloured scenario
we say that p is surrounded by a set of edges of a sin-
gle mixed colour if the edges define a continuous angle
greater than 180◦. As we may intuitively observe, in-
creasing the number of colours only lowers the chances
of a point being surrounded without changing the funda-
mental nature of the problem. In fact inspection shows
that all of our previous definitions and results hold in
a multi-coloured scenario. Thus our recolouring bound
for a bi-chromatic set of points carries over to a multi-
coloured point set.

A key to our result lies in the fact that we cover the
triangulation with chains that are well behaved. Con-
sider the following definition that loosens the require-
ments of monotone chains slightly by removing the x-
coordinate ordering condition.

Definition 10 An opposite chain is a path in the tri-
angulation, P = (p0, . . . , pm), such that

• p0 and pm are convex hull points

• either pipi+1 is opposite to pi−1pi with respect to
pi or pipi−1 is opposite to pi+1pi with respect to pi,
for all 0 < i < m.

We now make a more general statement regarding our
upper bound.

Theorem 11 Given a set of multi-coloured points, S,
together with a connected plane graph G on the points S,
with |S| = n. If we can obtain a cover of G with opposite
chains then any recolouring sequence will consist of at
most O(n2) recolourings.

5 Conclusions

We have re-examined a point recolouring method useful
for reclassifying points to obtain reasonable subdividing
boundaries. We show that no matter what sequence is
used to recolour a surrounded point the process enters
a state where no point is surrounded in at most O(n2)
recolourings.
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