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Abstract

In a distributed system with dynamic behaviour based on majority rules, a dynamo
is a pattern of initial faults which may lead the entire system to fail. The properties of
dynamos have been extensively studied for different plane topologies, and for the butterfly
family of connections. Here we investigate dynamos in three-dimensional toroidal meshes, as
an approach to the study of majority-based fault tolerance in multi-dimensional structures.
We establish lower and upper bounds on the number of faulty elements needed for a system
break-down, both for irreversible and monotone failures, under two basic majority rules.

Key words: distributed computing, three-dimensional mesh, majority rule, dynamo,
fault tolerance.

1. Introduction

In a distributed system, faulty elements can propagate wrong information through
their neighbors. A formal tool to study fault propagation is majority voting, which applies
when a vertex v performs an examination of the different copies of crucial data distributed
among its neighbours [20]. If the majority of such neighbours has corrupted data, the data
of v also become corrupted, and v is henceforth indistinguishable from a faulty vertex.

Majority voting is largely applied in distributed protocols for consensus, data base
consistency, mutual exclusion, cryptographic key distribution, and other applications of dis-
tributed computing. The process that takes place in the network obeys, in essence, to the
following elementary model. Initially each vertex is in one of two states (colors), black =
faulty or white = non-faulty. Assuming that the network works synchronously, all vertices
recolor themselves either black or white at each step, according to the color of the “majority”



of their neighbors. Color propagation depends on how majority is defined. A major problem
is to study the initial assignments of colors from which, after a finite number of steps, an
all-black fixed point is reached. After Peleg [21], an initial set of black vertices causing such
a total degradation is called dynamo, short for “dynamic monopoly”. Note that this process
may be asynchronous as well, as the local clocks may not be synchronized.

If each fault in the network is permanent, a dynamo is called irreversible. 1f a fault
can instead be mended by majority, the dynamo is reversible, and a vertex may switch color
several times according to a changing neighbourhood. In the latter case, the dynamo is
monotone if the set of black vertices B(t) existent at time ¢ is a proper subset of B(t + 1),
for all ¢. Clearly irreversible dynamos are always monotone.

The dynamics of majority rules have been extensively studied for cellular automata,
and for certain families of graphs. Research has focused on the periodic dynamics of finite
graphs [11, 23]; infinite graphs [18]; finite rings [2, 12]; and lines [16, 17]. Dynamic majority
has also been applied to the study of the immune system [1], and to image processing [10].
Some results in distributed systems are related to catastrophic fault patterns [5, 19, 24|,
and “monopolies” (i.e., configurations that converge to the all black state in a single step)
(3, 4, 20].

A general study of dynamos is quite recent. For the monotone case, some general
lower and upper bounds on the size of dynamos have been estabilished in [21], and specific
bounds for two-dimensional toroidal meshes of different types have been given in [9].The
speed of convergence to a final configuration is studied in [7]. Irreversible dynamos have
been examined for chordal rings [6], two-dimensional meshes [8], and butterflies [15].

In this paper we consider irreversible and monotone dynamos in three-dimensional
toroidal meshes focusing on size, that is, on the minimum number of initial black elements
needed to reach the fixed point. While meshes constitute one of the simplest and most
natural ways of connecting processors in a network, not much has been done in more than
two dimensions. In particular the study of dynamos for this case is new, while the problems
arising are much harder to solve. We then consider our contribution as an approach to the
study of majority-based fault tolerance in higher dimensions. Our results are summarized in
table .

2. Basic Definitions

Let us consider an m x n x p mesh M and denote with v,,., 0 < 2 < m — 1,
0<y<n-—1,0<z<p-—1,avertex of M. If M is closed as a torus, the vertices in each
of the border planes are connected to the vertices in corresponding positions in the opposite
border plane, thus forming ring connections in each of the three dimensions. Formally, we
have:

Definition 1 Toroidal Mesh
A toroidal mesh of m x n x p vertices is a mesh where each verter vy, ,, 0 < x < m — 1,
0<y<n-—1,0<2<p—1, is connected to the sit vertices V(1) mod m,y,z> V(z+1) mod m,y,z>

Vg, (y—1) mod n,z, Vz,(y+1) mod n,z5 Vx,y,(2—1) mod p> Vx,y,(24+1) mod p-



Simple Majority Strong Majority
Lower Bound Upper Bound Lower Bound Upper Bound
Irreversible | mn/3+©(1) | (mn+mp+np)/3 || mnp/4+ O(1) mnp/4
Dynamos +O(m +n+p) +O(mn + mp)
Monotone | 2mn/3+ O(1) | 2(mn +mp+np)/3 || 2mnp/5 + O(1) 2mnp/5
Dynamos +0(m+n+p) +O(mn + mp)

Table 1: Minimum cardinalities of irreversible and monotone dynamos for toroidal meshes
of m x n x p vertices. © denotes a strict asymptotic order of magnitude. When the formulae
are not symmetric in m, n, p, apply the values yielding highest lower bounds, or lowest upper
bounds. (For example in the lower bound mn/3 + ©(1), m and n have the greatest values
among m, n, p).

For covenience, toroidal meshes will be displayed in a Cartesian space x,vy, z, with
X,Y and Z denoting the three faces of the meshes lying in the coordinate planes orthogonal
to the axes w,y and z, respectively. For example X includes the n x p vertices vy, . with
0<y<n-—1,0<z<p-—1. Similarly, Y contains m X p vertices, and Z contains m X n
vertices. X and Y share an edge containing the p vertices vy, with 0 <z <p —1, etc.
Majority is defined as follows [21]:

Definition 2 Irreversible-majority rule. A wvertex v becomes black if the majority of its
neighbours are black. In case of tie v becomes black (simple majority), or keeps its color
(strong majority). Reversible-majority rule. A wvertex v takes the color of the majority of
its neighbours. In case of tie v becomes black (simple majority), or keeps its color (strong
majority).

Note that black (i.e. faulty) vertices tend to propagate their faults. In the irreversible
and reversible cases, simple (respectively: strong) majority asks for the presence of at least
three (respectively: four) black neighbours to color black a vertex. In the reversible case, at
least four white neighbours are needed to change the color from black to white. We can now
formally define dynamos.

Definition 3 A simple (respectively: strong) irreversible dynamo is an initial set of black
vertices from which an all black configuration is reached in a finite number of steps under
the simple (respectively: strong) irreversible-magjority rule.

A simple (respectively: strong) monotone dynamo is an initial set of black vertices from which
an all black configuration is reached in a finite number of steps under the simple (respectively:



strong) reversible-majority rule, such that no black vertex ever turns white during the process
(monotone black propagation).

Reversible majority is applied here only in the case of monotone dynamos, where it
never happens that a black vertex has a majority of white neighbours. Then any set of black
vertices reached during the process properly includes all the black sets reached at previous
steps. Note that irreversible dynamos always exhibit a monotone black propagation.

Definition 4 A k-white (respectively: k-black) block W' is a restriction of the mesh to a
subset of all white (respectively: all black) vertices, each of which has at least k neighbours

n W.

In particular a whole white plane section on the mesh orthogonal to one of the coor-
dinate axes is a 4-white block (recall the torus closure at the borders). Two adjacent whole
white rows form a 3-white block. A whole black three-dimensional rectangle Rg, of sizes
mg X ng X ps, with mg < m,ng < n,ps < p, is a 3-black block (the corner vertices have
three black neighbours).

The interest of detecting blocks in the mesh should be clear. A white block W is a
set of white vertices that will never turn black under the chosen majority rule. The presence
of W prevents the existence of a dynamo. A black block is a set of black vertices that will
never turn white in the reversible case. In a monotone dynamo, all the black vertices must
belong to 3-black blocks.

Finally, a new definition of tree introduced in [14] is crucially connected with the
concept of block. We have:

Definition 5 [14] A k-dense tree with k > 1 integer, is a graph T = (V, E) with at least one
vertex v (leaf) of degree < k, such that the restriction of T to V —{v} has again at least one
vertex of degree < k.

Note that, for k£ = 1, the definition of k-dense tree coincides with the usual definition
of tree. It has been shown in [14] that a k-dense tree of n vertices has at most kn—k(k+1)/2
edges.

3. Irreversible Dynamos

Network evolutions in irreversible and reversible dynamos are quite different. We
treat the two cases separately, further dividing our discussion between simple and strong
majority. Four cases then emerge, for each of which we derive upper and lower bounds to
the size of dynamos.

3.1 Simple Irreversible Majority

Let us start with the construction of a dynamo following the simple irreversible
majority rule. This gives an upper bound to the size of dynamos under such a rule.



Theorem 1 An m x n X p toroidal mesh M admits a simple irreversible dynamo S with
|S| = (mn 4+ mp+np)/3+O(m+n+p).

Proof (Constructive). Consider the three faces X, Y, Z of M. Recall that X and Y contain
n x p and m X p vertices, respectively, and share a side e of p vertices. Refer to figure 1.
Divide X in groups of three consecutive rows starting from the side opposite to e, and color
the vertices of each group as follows. In the first row all vertices are white, except for the
leftmost one; the second and the third row hold alternating colors, respectively starting with
a black and with a white vertex. If n is not multiple of 3, make the same configuration
without the last row, or the last two rows. This colors X up to side e. Continue on Y with
the same coloring, in the m — 1 rows following e. We have ("J“Tm*w (p+ 1) black vertices on
the combination of faces X|Y. Color now Z as indicated in figure 1 (note that the leftmost
column, and two bottom rows, are all white). We have [%:2](n — 1) black vertices on Z. In
total we have (mn + mp +np)/3+ O(m +n +p).

In each group of three consecutive rows in XY, two of them become immediately
black because each white vertex has three black neighbours. Also the leftmost column
becomes black in the first step. In each consecutive step two new columns, adjacent to the
ones colored black in the previous step, also become black until X|Y is completely black.
This makes black the two sides of X and Y common with Z (say, the leftmost column
and the bottom row of Z in figure 1), so that Z is wholly colored black with a similar
mechanism. Once the three orthogonal plane sections X, Y, Z are all black, the remaining
(m —1) x (n—1) x (p — 1) submesh becomes black starting from the eight corner vertices
that have now three black neighbours in X, YV, Z. O

Recall now that the presence of a 4-white block in the mesh prevents any simple
dynamo to exist. The following lower bound theorem crucially relies on this fact.

Theorem 2 Let S be a simple irreversible dynamo for an m xn x p toroidal mesh M. Then
|S| > maz (mn/3, mp/3,np/3) + O(1).

Proof Consider the n x p chains of m vertices incident to the face X of M and parallel to
the = axis. Some of them must include black vertices in order to prevent the existence of
4-white blocks. Project such black vertices onto X, along the direction x. Now the existence
of a cycle (closed path) of white vertices in X clearly corresponds to a 4-white block in three
dimensions, in the form of a cylinder parallel to z. (For example no white cycle exists on
X with the pattern of black vertices shown in figure 1, then no cylindrical 4-white block
parallel to x exists in that mesh). From a theorem for strong majority in two-dimensional
meshes proved in [8], at least [22-1] black vertices must exist in X to prevent the formation
of white cycles. then at least the same number of black vertices must exist in M, to prevent,
by their projections, the existence of cycles in X. Applying this argument also to the faces
Y and Z the thesis immediately follows. O

3.2 Strong Irreversible Majority

Strong irreversible majority is simpler to study than the previous case. The following
theorem establishes an upper bound to the size of dynamos.
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Figure 1: Node coloring for simple irreversible majority. In the example m = 10, n = 8,
p = 6.

Theorem 3 An m x n x p toroidal mesh M admits a strong irreversible dynamo S with
|S| = mnp/4 + ©(mn + mp).

Proof Consider the plane sections P; of M, 0 <1 <m — 1, parallel to face X and placed at
integer = coordinates (in particular, Py = X). On the sections P;, with i even, place black
and white vertices as in a checkboard (figure 2), for a total of [%*] - [%] black vertices. On
the sections P;, with ¢ odd, place alternate black and white vertices on the two sides a, b
laying on Y and Z (figure 2), for a total of [2*2=1] . |2 | black vertices. The total number
of black vertices is then mnp/4 + ©(mn + mp).

The white vertices of all P;, 7 even, become black in one step, because all of them have
four black neighbours. Then, the white vertices of @ and b on P;, ¢« odd, become black. Then
all the other vertices of these sections become black starting from the four corner vertices
V1, Vg, VU3, V4. ([

To determine a lower bound that matches the upper bound of theorem 3 we will make
crucial use of the concept of k-dense tree. In fact, to change the color of all the white vertices
into black, at least one of them must have at most two white neighbours at any step. That
is, the restriction of the mesh to the subgraph of white vertices must be a 2-dense tree. We
have:

Theorem 4 Let S be a strong irreversible dynamo for an m xn x p toroidal mesh M. Then
|S| > mnp/4+ O(1).
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Figure 2: Node coloring for strong irreversible majority.

Proof Let T and E be the sets of vertices and edges of the mesh. Let Band W =T — B
be the subsets of black and white vertices, respectively. And let E} be the subset of edges
connecting pairs of white vertices. Consider the subset £ — Fy, of edges having at least one
black extreme. We have |E| — |Ew| < 6|B|, where the equality is met when each vertex in B
is connected with exactly one vertex in W. As already observed, white vertices must form
a 2-dense tree, that is |Ey/| < 2|W|—2-3/2 = 2|T| — 2|B| — 3 (see section 2 for the upper
bound on the number of edged in a k-dense tree). Combining the two inequalities above we
have: |E| < |Ew|+ 6|B| < 2|T| + 4/B| — 3. Noting that || = mnp and |E| = 3mnp, we
immediately derive: |B| > mnp/4 + 3/4. O

4. Monotone Dynamos

As for the irreversible case, color propagation crucially depends on the type of ma-
jority. Here, however, we must “protect” black vertices to prevent them from becoming
white.

4.1 Simple Monotone Majority

An upper bound to the size of dynamos with simple monotone majority is given
in the following theorem. The novelty, compared with the irreversible case, is that black
vertices must now be clustered into 3-black blocks to guarantee monotonicity.

Theorem 5 An m x n X p toroidal mesh M admits a simple monotone dynamo S with
|S| = 2(mn + mp + np)/3 +O(m +n+p)

Proof As in theorem 1, consider the faces X, Y of M with the common side e. Refer to
figure 3. Color X and Y by setting two black columns for each group of three, and two
black rows on X at the side opposite to e. We then have [2p/3](m +n — 1) + |2p/3]
black vertices on the combination of faces X|Y. Assume that the leftmost colums of X |V
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Figure 3: Node coloring for simple monotone majority.

lie on the two sides of X and Y common to Z (say, the left column and the bottom row
of Z). These two sides then appear black in Z. Color the remaining vertices of Z as
indicated. We have [2(n — 2)/3|(m — 1) + [(n — 1)/3] new black vertices in Z, for a total
of 2(mn + mp + np)/3 + ©(m + n + p) black vertices in M.

All the white vertices of X|Y" become black in pairs, starting from the pairs marked
vy, vy that have three black neighbours from the beginning. Similarly, the white vertices of
Z become black starting from the pairs marked v3, v4. Once the three faces X, Y, Z are all
black, the whole mesh is colored black as indicated in the proof of theorem 1. To complete
the proof note that all the initial black vertices form a 3-black block, and each new black
vertex is adjoined to such a block, so that no black vertex ever turns white. O

To derive a lower bound to the size of dynamos, recall that the presence of 4-white
blocks prevents a dynamo to exist. We have:

Theorem 6 Let S be a simple monotone dynamo for an m x n x p toroidal mesh M. Then
|S| > maz (2np/3,2mp/3,2mn/3) + O(1).

Proof As in theorem 2, project the black vertices of M onto X along the direction z. On
this new configuration, let 7" and E be the sets of vertices and edges of X; B be the subset
of black vertices in X; Ey be the subset of edges in X with two white extremes. For S to
be a dynamo of M, no white cycle must be present in X, because one such a cycle would
corrispond to a 4-white block in M in the form of a cylinder parallel to x. That is, the white
vertices in X must form a forest. We then have: |Ey | < |T'| — |B| — 1, where T'— B is the
subset of white vertices in X.

Since the black vertices of M must form a 3-black block, and each vertex has only two
neighbours with the same y and z coordinates, each black vertex v € B must be adjacent
to at least another black vertex u € B. In fact, B can be partitioned into three subsets
By, By, B; (figure 4) such that By is a set of 1-dense trees (or simply a forest) with at least
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Figure 4: Projections on X of 3-black blocks.

two vertices each; By is a set of 2-dense trees with all vertices of degree > 2; and Bj is a set
of 3-dense trees with all vertices of degree > 3. In particular, each dense tree in B3 must
occupy two whole adjacent rows or columns. Consider now the set £ — Ey of edges in X
having at least one black extreme. We have: |E| — |Ey| < £|Bi| 4+ L2|Bs| + 3|Bs|, where
the equality is met when each set of By contains exactly two elements, with a total of seven
incident edges in X; each set of By contains exactly four elements, with a total of twelve
incident edges in X; and each set of Bj is composed of two adjacent rows, or two adjacent
columns, so that each of its elements has one edge connected to a white vertex and three
edges connected to black vertices, with an average of 5/2 incident edges per vertex in X.

Combining the two inequalities derived thus far; noting that |E| = 2np and |T'| = np;
and letting |By| = aq|B|, |By| = as|B|, |B3| = (1 — oy — ay)|B| we have: |E| < |T|— |B| —
1+ (fou 4+ 3as + 3(1 — ay — a))|B|, hence |B| > %. Note now that for a black
vertex v € By to be part of a 3-black block, all the m vertices of M with the same y and
z coordinates of v must be black. Similarly, for each black vertex v € By, at least another
vertex of M with the same y and z coordinates of v must be black, while the vertices in B3
already form a 3-black block. Letting Bj; be the set of black vertices in M we then have:
| Bur| > m|By|+2|Ba| + |Bs| > 2225y (m — 1) + @ + 1). It can be immediately verified
that this expression, with the obvious condition m > 3, is minimized for oy = ay = 0 (i.e.,
all the black vertices in X belong to B;). Hence we have: |By| > w.

Applying the same argument to the projections of black vertices onto Y and Z, the
thesis immediately follows. a

4.2 Strong Monotone Majority

In this final subsection we impose monotonicity under strong majority, with a com-
bination of the arguments used for strong irreversible majority (subsection 3.2), and simple
monotone majority (subsetioon 4.1). In particular, black vertices must be clustered into
3-black blocks. As before, the upper bound on the size of dynamos is constructive. We have:

Theorem 7 An m x n X p toroidal mesh M admits a simple monotone dynamo S with
|S| = 2mnp/5 + O(mn + mp)
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Figure 5: Node coloring for strong monotone majority.

Proof As in the proof of theorem 3, consider the plane sections P; of M, 0 <1 < m — 1,
parallel to the face X, with Py = X. Refer to figure 5. On each of the sections P;, with 7
even, place the white vertices at “knight’s distance”, such that each white vertex has four
black neighbours, and each black vertex has three black neighbours. Note that there are five
white vertices in each square portion of F; of side five, hence there are [%ngﬂ black vertices
in each section P;, with i even, for a total of [22np][%2] > 2mnp/5 black vertices in all such
sections. On the sections P;, with ¢ odd, place the black vertices along a path from the
top-left corner to the bottom-right corner, such that the vertices in the same positions in the
sections P; of even indices are all black, for a total of (n 4 p — 1)[% | black vertices. These
black vertices have one or two black neighbours in P;, plus two black neighbours in P, ; and
P, ;1. We then have a total of 2mnp/5 + ©(mn + mp) black vertices in M, all clustered in a
3-black block.

The white vertices of all P;, 7 even, become black in one step, because all of them
have four black neighbours. Then, the white vertices on P;, 7 odd, become black in successive
steps, starting from the vertices marked v in the figure. 0O

To prove a matching lower bound, recall that to change the color of all white vertices
into black, the restriction of the mesh to such vertices must be a 2-dense tree. We have:

Theorem 8 Let S be a simple monotone dynamo for an m x n x p toroidal mesh M. Then
|S| > 2mnp/5+ O(1).

Proof As in the proof of theorem 4, let T"and E be the sets of vertices and edges of the mesh;
B and W =T — B be the subsets of black and white vertices. Furthermore, let Fyy and
Ewp be the subsets of edges connecting two white vertices, and a white and a black vertex,
respectively. Since the white vertices must form a 2-dense tree we have: |Eyw| < 2|T—B|—3
(see section 2). Since the black vertices must be clustered into 3-black blocks, each black
vertex can have at most three white neighbours, that is: |Ey | < 3|B|. A relation between



|Eww| and |Ew | can be established by noting that each white vertex v has six incident
edges, each one connecting v with a black vertex, or with another white vertex. That is:
|Ew|+2|Eww| = 6|T—B|. Combining these relations we have: 2|T—B|+6 < |Ewg| < 3|B|;
and recalling that |T| = mnp we finally obtain: |B| > 2mnp/5 + 6/5. 0

5. Concluding Remarks

In this paper we have discussed the propagation of faulty behaviour in a distributed
system, under various disciplines of majority voting among neighbours. In particular we have
studied upper and lower bounds to the size of the configurations of faulty vertices (dynamos)
that cause the whole system to fail. The upper bounds are constructive, that is, we have
exhibited the dynamos of minimum size that we were able to derive. The lower bounds
have instead been derived with combinatorial arguments, making use of the properties of a
particular family of graphs called dense trees.

This classical problem had been previously studied for two-dimensional network topolo-
gies only. Here we have examined three-dimensional meshes with toroidal closures. The
problems thus arising are much harder than in two dimensions. The proposed solutions are
not always strict, in the sense that the upper and lower bounds to the size of dynamos agree
in order of magnitude, but have identical terms of higher order only in the case of strong
majority. See table for a summary of results. Finding bounds matching exactly, as done in
the literature for two-dimensional meshes, is an open problem of not easy solution.

We regard this work as an approach to the study of majority-based fault tolerance
in higher dimensions. Several changes in the topology are obviously possible. In particular,
our discussion has been directed to meshes with toroidal connections, to avoid the border
effects occurring in simple meshes. Our techniques, however, can be immediatly extended
to this case.
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