
Dynamos in Three-Dimensional MeshesYoel de la NovalFaultad de Matematia y Computation, Universidad de la Habana, CubaFabrizio LuioDipartimento di informatia, Universit�a di Pisa, ItalyYurai Nu~nez RodriguezFaultad de Matematia y Computation, Universidad de la Habana, CubaLinda PagliDipartimento di informatia, Universit�a di Pisa, ItalyE-mail: yoel,yurai�omuh.uh.u, luio,pagli�di.unipi.itAbstratIn a distributed system with dynami behaviour based on majority rules, a dynamois a pattern of initial faults whih may lead the entire system to fail. The properties ofdynamos have been extensively studied for di�erent plane topologies, and for the butteryfamily of onnetions. Here we investigate dynamos in three-dimensional toroidal meshes, asan approah to the study of majority-based fault tolerane in multi-dimensional strutures.We establish lower and upper bounds on the number of faulty elements needed for a systembreak-down, both for irreversible and monotone failures, under two basi majority rules.Key words: distributed omputing, three-dimensional mesh, majority rule, dynamo,fault tolerane. 1. IntrodutionIn a distributed system, faulty elements an propagate wrong information throughtheir neighbors. A formal tool to study fault propagation is majority voting, whih applieswhen a vertex v performs an examination of the di�erent opies of ruial data distributedamong its neighbours [20℄. If the majority of suh neighbours has orrupted data, the dataof v also beome orrupted, and v is heneforth indistinguishable from a faulty vertex.Majority voting is largely applied in distributed protools for onsensus, data baseonsisteny, mutual exlusion, ryptographi key distribution, and other appliations of dis-tributed omputing. The proess that takes plae in the network obeys, in essene, to thefollowing elementary model. Initially eah vertex is in one of two states (olors), blak =faulty or white = non-faulty. Assuming that the network works synhronously, all vertiesreolor themselves either blak or white at eah step, aording to the olor of the \majority"



of their neighbors. Color propagation depends on how majority is de�ned. A major problemis to study the initial assignments of olors from whih, after a �nite number of steps, anall-blak �xed point is reahed. After Peleg [21℄, an initial set of blak verties ausing suha total degradation is alled dynamo, short for \dynami monopoly". Note that this proessmay be asynhronous as well, as the loal loks may not be synhronized.If eah fault in the network is permanent, a dynamo is alled irreversible. If a faultan instead be mended by majority, the dynamo is reversible, and a vertex may swith olorseveral times aording to a hanging neighbourhood. In the latter ase, the dynamo ismonotone if the set of blak verties B(t) existent at time t is a proper subset of B(t + 1),for all t. Clearly irreversible dynamos are always monotone.The dynamis of majority rules have been extensively studied for ellular automata,and for ertain families of graphs. Researh has foused on the periodi dynamis of �nitegraphs [11, 23℄; in�nite graphs [18℄; �nite rings [2, 12℄; and lines [16, 17℄. Dynami majorityhas also been applied to the study of the immune system [1℄, and to image proessing [10℄.Some results in distributed systems are related to atastrophi fault patterns [5, 19, 24℄,and \monopolies" (i.e., on�gurations that onverge to the all blak state in a single step)[3, 4, 20℄.A general study of dynamos is quite reent. For the monotone ase, some generallower and upper bounds on the size of dynamos have been estabilished in [21℄, and spei�bounds for two-dimensional toroidal meshes of di�erent types have been given in [9℄.Thespeed of onvergene to a �nal on�guration is studied in [7℄. Irreversible dynamos havebeen examined for hordal rings [6℄, two-dimensional meshes [8℄, and butteries [15℄.In this paper we onsider irreversible and monotone dynamos in three-dimensionaltoroidal meshes fousing on size, that is, on the minimum number of initial blak elementsneeded to reah the �xed point. While meshes onstitute one of the simplest and mostnatural ways of onneting proessors in a network, not muh has been done in more thantwo dimensions. In partiular the study of dynamos for this ase is new, while the problemsarising are muh harder to solve. We then onsider our ontribution as an approah to thestudy of majority-based fault tolerane in higher dimensions. Our results are summarized intable . 2. Basi De�nitionsLet us onsider an m � n � p mesh M and denote with vx;y;z, 0 � x � m � 1,0 � y � n� 1, 0 � z � p� 1, a vertex of M . If M is losed as a torus, the verties in eahof the border planes are onneted to the verties in orresponding positions in the oppositeborder plane, thus forming ring onnetions in eah of the three dimensions. Formally, wehave:De�nition 1 Toroidal MeshA toroidal mesh of m � n � p verties is a mesh where eah vertex vx;y;z, 0 � x � m � 1,0 � y � n� 1, 0 � z � p� 1, is onneted to the six verties v(x�1) mod m;y;z, v(x+1) modm;y;z,vx;(y�1) mod n;z, vx;(y+1) mod n;z, vx;y;(z�1) mod p, vx;y;(z+1) mod p.



Simple Majority Strong MajorityLower Bound Upper Bound Lower Bound Upper BoundIrreversible mn=3 + �(1) (mn+mp + np)=3 mnp=4 + �(1) mnp=4Dynamos +�(m+ n+ p) +�(mn+mp)Monotone 2mn=3 + �(1) 2(mn +mp+ np)=3 2mnp=5 + �(1) 2mnp=5Dynamos +�(m+ n+ p) +�(mn+mp)Table 1: Minimum ardinalities of irreversible and monotone dynamos for toroidal meshesof m�n�p verties. � denotes a strit asymptoti order of magnitude. When the formulaeare not symmetri in m;n; p, apply the values yielding highest lower bounds, or lowest upperbounds. (For example in the lower bound mn=3 + �(1), m and n have the greatest valuesamong m;n; p).For oveniene, toroidal meshes will be displayed in a Cartesian spae x; y; z, withX; Y and Z denoting the three faes of the meshes lying in the oordinate planes orthogonalto the axes x; y and z, respetively. For example X inludes the n � p verties v0;y;z with0 � y � n� 1, 0 � z � p� 1. Similarly, Y ontains m � p verties, and Z ontains m � nverties. X and Y share an edge ontaining the p verties v0;0;z with 0 � z � p� 1, et.Majority is de�ned as follows [21℄:De�nition 2 Irreversible-majority rule. A vertex v beomes blak if the majority of itsneighbours are blak. In ase of tie v beomes blak (simple majority), or keeps its olor(strong majority). Reversible-majority rule. A vertex v takes the olor of the majority ofits neighbours. In ase of tie v beomes blak (simple majority), or keeps its olor (strongmajority).Note that blak (i.e. faulty) verties tend to propagate their faults. In the irreversibleand reversible ases, simple (respetively: strong) majority asks for the presene of at leastthree (respetively: four) blak neighbours to olor blak a vertex. In the reversible ase, atleast four white neighbours are needed to hange the olor from blak to white. We an nowformally de�ne dynamos.De�nition 3 A simple (respetively: strong) irreversible dynamo is an initial set of blakverties from whih an all blak on�guration is reahed in a �nite number of steps underthe simple (respetively: strong) irreversible-majority rule.A simple (respetively: strong) monotone dynamo is an initial set of blak verties from whihan all blak on�guration is reahed in a �nite number of steps under the simple (respetively:



strong) reversible-majority rule, suh that no blak vertex ever turns white during the proess(monotone blak propagation).Reversible majority is applied here only in the ase of monotone dynamos, where itnever happens that a blak vertex has a majority of white neighbours. Then any set of blakverties reahed during the proess properly inludes all the blak sets reahed at previoussteps. Note that irreversible dynamos always exhibit a monotone blak propagation.De�nition 4 A k-white (respetively: k-blak) blok W is a restrition of the mesh to asubset of all white (respetively: all blak) verties, eah of whih has at least k neighboursin W . In partiular a whole white plane setion on the mesh orthogonal to one of the oor-dinate axes is a 4-white blok (reall the torus losure at the borders). Two adjaent wholewhite rows form a 3-white blok. A whole blak three-dimensional retangle RS, of sizesmS � nS � pS, with mS < m; nS < n; pS < p, is a 3-blak blok (the orner verties havethree blak neighbours).The interest of deteting bloks in the mesh should be lear. A white blok W is aset of white verties that will never turn blak under the hosen majority rule. The preseneof W prevents the existene of a dynamo. A blak blok is a set of blak verties that willnever turn white in the reversible ase. In a monotone dynamo, all the blak verties mustbelong to 3-blak bloks.Finally, a new de�nition of tree introdued in [14℄ is ruially onneted with theonept of blok. We have:De�nition 5 [14℄ A k-dense tree with k � 1 integer, is a graph T = (V;E) with at least onevertex v (leaf) of degree � k, suh that the restrition of T to V �fvg has again at least onevertex of degree � k.Note that, for k = 1, the de�nition of k-dense tree oinides with the usual de�nitionof tree. It has been shown in [14℄ that a k-dense tree of n verties has at most kn�k(k+1)=2edges. 3. Irreversible DynamosNetwork evolutions in irreversible and reversible dynamos are quite di�erent. Wetreat the two ases separately, further dividing our disussion between simple and strongmajority. Four ases then emerge, for eah of whih we derive upper and lower bounds tothe size of dynamos.3.1 Simple Irreversible MajorityLet us start with the onstrution of a dynamo following the simple irreversiblemajority rule. This gives an upper bound to the size of dynamos under suh a rule.



Theorem 1 An m � n � p toroidal mesh M admits a simple irreversible dynamo S withjSj = (mn +mp+ np)=3 + �(m + n+ p).Proof (Construtive). Consider the three faes X; Y; Z of M . Reall that X and Y ontainn � p and m � p verties, respetively, and share a side e of p verties. Refer to �gure 1.Divide X in groups of three onseutive rows starting from the side opposite to e, and olorthe verties of eah group as follows. In the �rst row all verties are white, exept for theleftmost one; the seond and the third row hold alternating olors, respetively starting witha blak and with a white vertex. If n is not multiple of 3, make the same on�gurationwithout the last row, or the last two rows. This olors X up to side e. Continue on Y withthe same oloring, in the m� 1 rows following e. We have dn+m�13 e(p+ 1) blak verties onthe ombination of faes XjY . Color now Z as indiated in �gure 1 (note that the leftmostolumn, and two bottom rows, are all white). We have dm�23 e(n� 1) blak verties on Z. Intotal we have (mn+mp + np)=3 + �(m + n+ p).In eah group of three onseutive rows in XjY , two of them beome immediatelyblak beause eah white vertex has three blak neighbours. Also the leftmost olumnbeomes blak in the �rst step. In eah onseutive step two new olumns, adjaent to theones olored blak in the previous step, also beome blak until XjY is ompletely blak.This makes blak the two sides of X and Y ommon with Z (say, the leftmost olumnand the bottom row of Z in �gure 1), so that Z is wholly olored blak with a similarmehanism. One the three orthogonal plane setions X, Y , Z are all blak, the remaining(m � 1)� (n � 1)� (p� 1) submesh beomes blak starting from the eight orner vertiesthat have now three blak neighbours in X, Y , Z. 2Reall now that the presene of a 4-white blok in the mesh prevents any simpledynamo to exist. The following lower bound theorem ruially relies on this fat.Theorem 2 Let S be a simple irreversible dynamo for an m�n�p toroidal mesh M . ThenjSj � max (mn=3; mp=3; np=3) + �(1).Proof Consider the n � p hains of m verties inident to the fae X of M and parallel tothe x axis. Some of them must inlude blak verties in order to prevent the existene of4-white bloks. Projet suh blak verties onto X, along the diretion x. Now the existeneof a yle (losed path) of white verties in X learly orresponds to a 4-white blok in threedimensions, in the form of a ylinder parallel to x. (For example no white yle exists onX with the pattern of blak verties shown in �gure 1, then no ylindrial 4-white blokparallel to x exists in that mesh). From a theorem for strong majority in two-dimensionalmeshes proved in [8℄, at least dnp+13 e blak verties must exist in X to prevent the formationof white yles. then at least the same number of blak verties must exist inM , to prevent,by their projetions, the existene of yles in X. Applying this argument also to the faesY and Z the thesis immediately follows. 23.2 Strong Irreversible MajorityStrong irreversible majority is simpler to study than the previous ase. The followingtheorem establishes an upper bound to the size of dynamos.



� Æ � Æ � Æ Æ Æ � Æ � Æ � Æ� Æ Æ Æ Æ Æ Æ � Æ � Æ � Æ �Æ � Æ � Æ � Æ Æ Æ Æ Æ Æ Æ Æ� Æ � Æ � Æ Æ Æ � Æ � Æ � Æm � Æ Æ Æ Æ Æ Y m Æ � Æ � Æ � Æ � ZÆ � Æ � Æ � Æ Æ Æ Æ Æ Æ Æ Æ� Æ � Æ � Æ Æ Æ � Æ � Æ � Æ� Æ Æ Æ Æ Æ Æ � Æ � Æ � Æ �Æ � Æ � Æ � Æ Æ Æ Æ Æ Æ Æ Æ� � Æ � Æ � Æ � e Æ Æ Æ Æ Æ Æ Æ Æ� Æ Æ Æ Æ Æ nÆ � Æ � Æ �� Æ � Æ � Æn � Æ Æ Æ Æ Æ XÆ � Æ � Æ �� Æ � Æ � Æ� Æ Æ Æ Æ ÆpFigure 1: Node oloring for simple irreversible majority. In the example m = 10, n = 8,p = 6.Theorem 3 An m � n � p toroidal mesh M admits a strong irreversible dynamo S withjSj = mnp=4 + �(mn+mp).Proof Consider the plane setions Pi of M , 0 � i � m� 1, parallel to fae X and plaed atinteger x oordinates (in partiular, P0 = X). On the setions Pi, with i even, plae blakand white verties as in a hekboard (�gure 2), for a total of dnp2 e � dm2 e blak verties. Onthe setions Pi, with i odd, plae alternate blak and white verties on the two sides a, blaying on Y and Z (�gure 2), for a total of dn+p�12 e � bm2  blak verties. The total numberof blak verties is then mnp=4 + �(mn +mp).The white verties of all Pi, i even, beome blak in one step, beause all of them havefour blak neighbours. Then, the white verties of a and b on Pi, i odd, beome blak. Thenall the other verties of these setions beome blak starting from the four orner vertiesv1; v2; v3; v4. 2To determine a lower bound that mathes the upper bound of theorem 3 we will makeruial use of the onept of k-dense tree. In fat, to hange the olor of all the white vertiesinto blak, at least one of them must have at most two white neighbours at any step. Thatis, the restrition of the mesh to the subgraph of white verties must be a 2-dense tree. Wehave:Theorem 4 Let S be a strong irreversible dynamo for an m�n�p toroidal mesh M . ThenjSj � mnp=4 + �(1).



a� Æ � Æ � Æ � v1 Æ Æ Æ v3Æ � Æ � Æ � Æ Æ Æ Æ Æ Æ� Æ � Æ � Æ � Æ Æ Æ Æ Æn Æ � Æ � Æ � n Æ Æ Æ Æ Æ Æ� Æ � Æ � Æ � Æ Æ Æ Æ ÆÆ � Æ � Æ � Æ v2 Æ Æ Æ v4� Æ � Æ � Æ � Æ � Æ � Æ bp pPi even Pi oddFigure 2: Node oloring for strong irreversible majority.Proof Let T and E be the sets of verties and edges of the mesh. Let B and W = T � Bbe the subsets of blak and white verties, respetively. And let EW be the subset of edgesonneting pairs of white verties. Consider the subset E �EW of edges having at least oneblak extreme. We have jEj� jEW j � 6jBj, where the equality is met when eah vertex in Bis onneted with exatly one vertex in W . As already observed, white verties must forma 2-dense tree, that is jEW j � 2jW j � 2 � 3=2 = 2jT j � 2jBj � 3 (see setion 2 for the upperbound on the number of edged in a k-dense tree). Combining the two inequalities above wehave: jEj � jEW j + 6jBj � 2jT j + 4jBj � 3. Noting that jT j = mnp and jEj = 3mnp, weimmediately derive: jBj � mnp=4 + 3=4. 24. Monotone DynamosAs for the irreversible ase, olor propagation ruially depends on the type of ma-jority. Here, however, we must \protet" blak verties to prevent them from beomingwhite.4.1 Simple Monotone MajorityAn upper bound to the size of dynamos with simple monotone majority is givenin the following theorem. The novelty, ompared with the irreversible ase, is that blakverties must now be lustered into 3-blak bloks to guarantee monotoniity.Theorem 5 An m � n � p toroidal mesh M admits a simple monotone dynamo S withjSj = 2(mn +mp+ np)=3 + �(m+ n + p)Proof As in theorem 1, onsider the faes X, Y of M with the ommon side e. Refer to�gure 3. Color X and Y by setting two blak olumns for eah group of three, and twoblak rows on X at the side opposite to e. We then have d2p=3e(m + n � 1) + b2p=3blak verties on the ombination of faes XjY . Assume that the leftmost olums of XjY



� � v2 � � v2 � v4 � � v4 � � v4� � Æ � � Æ � Æ � � Æ � � Æm � � Æ � � Æ Y m � Æ � � Æ � � Æ Z� � Æ � � Æ � v3 � � v3 � � v3� � Æ � � Æ � � � � � � � �� � � Æ � � Æ � e � � � � � � � �� � Æ � � Æ n� � Æ � � Æ� � Æ � � Æn � � Æ � � Æ X� � v1 � � v1� � � � � �� � � � � �pFigure 3: Node oloring for simple monotone majority.lie on the two sides of X and Y ommon to Z (say, the left olumn and the bottom rowof Z). These two sides then appear blak in Z. Color the remaining verties of Z asindiated. We have d2(n � 2)=3e(m � 1) + d(n � 1)=3e new blak verties in Z, for a totalof 2(mn +mp+ np)=3 + �(m+ n+ p) blak verties in M .All the white verties of XjY beome blak in pairs, starting from the pairs markedv1; v2 that have three blak neighbours from the beginning. Similarly, the white verties ofZ beome blak starting from the pairs marked v3; v4. One the three faes X, Y , Z are allblak, the whole mesh is olored blak as indiated in the proof of theorem 1. To ompletethe proof note that all the initial blak verties form a 3-blak blok, and eah new blakvertex is adjoined to suh a blok, so that no blak vertex ever turns white. 2To derive a lower bound to the size of dynamos, reall that the presene of 4-whitebloks prevents a dynamo to exist. We have:Theorem 6 Let S be a simple monotone dynamo for an m� n� p toroidal mesh M . ThenjSj � max (2np=3; 2mp=3; 2mn=3) + �(1).Proof As in theorem 2, projet the blak verties of M onto X along the diretion x. Onthis new on�guration, let T and E be the sets of verties and edges of X; B be the subsetof blak verties in X; EW be the subset of edges in X with two white extremes. For S tobe a dynamo of M , no white yle must be present in X, beause one suh a yle wouldorrispond to a 4-white blok inM in the form of a ylinder parallel to x. That is, the whiteverties in X must form a forest. We then have: jEW j � jT j � jBj � 1, where T � B is thesubset of white verties in X.Sine the blak verties ofM must form a 3-blak blok, and eah vertex has only twoneighbours with the same y and z oordinates, eah blak vertex v 2 B must be adjaentto at least another blak vertex u 2 B. In fat, B an be partitioned into three subsetsB1; B2; B3 (�gure 4) suh that B1 is a set of 1-dense trees (or simply a forest) with at least



Æ Æ Æ Æ Æ ÆB1 � Æ � � � Æ� � Æ � Æ ÆÆ Æ Æ Æ Æ ÆÆ Æ Æ � � ÆÆ Æ � � � Æ B2Æ Æ � � � Æ� � � � � �� � � � � � B3Figure 4: Projetions on X of 3-blak bloks.two verties eah; B2 is a set of 2-dense trees with all verties of degree � 2; and B3 is a setof 3-dense trees with all verties of degree � 3. In partiular, eah dense tree in B3 mustoupy two whole adjaent rows or olumns. Consider now the set E � EW of edges in Xhaving at least one blak extreme. We have: jEj � jEW j � 72 jB1j + 124 jB2j + 52 jB3j, wherethe equality is met when eah set of B1 ontains exatly two elements, with a total of seveninident edges in X; eah set of B2 ontains exatly four elements, with a total of twelveinident edges in X; and eah set of B3 is omposed of two adjaent rows, or two adjaentolumns, so that eah of its elements has one edge onneted to a white vertex and threeedges onneted to blak verties, with an average of 5/2 inident edges per vertex in X.Combining the two inequalities derived thus far; noting that jEj = 2np and jT j = np;and letting jB1j = �1jBj, jB2j = �2jBj, jB3j = (1� �1 � �2)jBj we have: jEj � jT j � jBj �1 + (72�1 + 3�2 + 52(1 � �1 � �2))jBj, hene jBj � 2(np+1)2�1+�2+3 . Note now that for a blakvertex v 2 B1 to be part of a 3-blak blok, all the m verties of M with the same y andz oordinates of v must be blak. Similarly, for eah blak vertex v 2 B2, at least anothervertex of M with the same y and z oordinates of v must be blak, while the verties in B3already form a 3-blak blok. Letting BM be the set of blak verties in M we then have:jBM j � mjB1j+2jB2j+ jB3j � 2(np+1)2�1+�2+3(�1(m� 1)+�2+1). It an be immediately veri�edthat this expression, with the obvious ondition m � 3, is minimized for �1 = �2 = 0 (i.e.,all the blak verties in X belong to B3). Hene we have: jBM j � 2(np+1)3 .Applying the same argument to the projetions of blak verties onto Y and Z, thethesis immediately follows. 24.2 Strong Monotone MajorityIn this �nal subsetion we impose monotoniity under strong majority, with a om-bination of the arguments used for strong irreversible majority (subsetion 3.2), and simplemonotone majority (subsetioon 4.1). In partiular, blak verties must be lustered into3-blak bloks. As before, the upper bound on the size of dynamos is onstrutive. We have:Theorem 7 An m � n � p toroidal mesh M admits a simple monotone dynamo S withjSj = 2mnp=5 + �(mn +mp)



� � � Æ � � � � Æ � � Æ Æ Æ Æ Æ Æ Æ Æ v� Æ � � � � Æ � � � � Æ Æ Æ Æ Æ Æ Æ Æ Æ� � � � Æ � � � � Æ � v Æ Æ Æ Æ Æ Æ Æ Æ� � Æ � � � � Æ � � � � v Æ Æ Æ Æ Æ Æ Æn Æ � � � � Æ � � � � n v � � � � v Æ Æ Æ Æ� � � Æ � � � � Æ � Æ Æ Æ v � � Æ Æ Æ Æ� Æ � � � � Æ � � � Æ Æ Æ Æ v � Æ Æ Æ Æ� � � � Æ � � � � Æ Æ Æ Æ Æ Æ � v Æ Æ Æ� � Æ � � � � Æ � � Æ Æ Æ Æ Æ � � v Æ ÆÆ � � � � Æ � � � � Æ Æ Æ Æ Æ v � � � �p pPi even Pi oddFigure 5: Node oloring for strong monotone majority.Proof As in the proof of theorem 3, onsider the plane setions Pi of M , 0 � i � m � 1,parallel to the fae X, with P0 = X. Refer to �gure 5. On eah of the setions Pi, with ieven, plae the white verties at \knight's distane", suh that eah white vertex has fourblak neighbours, and eah blak vertex has three blak neighbours. Note that there are �vewhite verties in eah square portion of Pi of side �ve, hene there are d2025npe blak vertiesin eah setion Pi, with i even, for a total of d2025npedm2 e � 2mnp=5 blak verties in all suhsetions. On the setions Pi, with i odd, plae the blak verties along a path from thetop-left orner to the bottom-right orner, suh that the verties in the same positions in thesetions Pi of even indies are all blak, for a total of (n + p� 1)bm2  blak verties. Theseblak verties have one or two blak neighbours in Pi, plus two blak neighbours in Pi�1 andPi+1. We then have a total of 2mnp=5 +�(mn+mp) blak verties in M , all lustered in a3-blak blok.The white verties of all Pi, i even, beome blak in one step, beause all of themhave four blak neighbours. Then, the white verties on Pi, i odd, beome blak in suessivesteps, starting from the verties marked v in the �gure. 2To prove a mathing lower bound, reall that to hange the olor of all white vertiesinto blak, the restrition of the mesh to suh verties must be a 2-dense tree. We have:Theorem 8 Let S be a simple monotone dynamo for an m� n� p toroidal mesh M . ThenjSj � 2mnp=5 + �(1).Proof As in the proof of theorem 4, let T and E be the sets of verties and edges of the mesh;B and W = T � B be the subsets of blak and white verties. Furthermore, let EWW andEWB be the subsets of edges onneting two white verties, and a white and a blak vertex,respetively. Sine the white verties must form a 2-dense tree we have: jEWW j � 2jT�Bj�3(see setion 2). Sine the blak verties must be lustered into 3-blak bloks, eah blakvertex an have at most three white neighbours, that is: jEWBj � 3jBj. A relation between



jEWW j and jEWBj an be established by noting that eah white vertex v has six inidentedges, eah one onneting v with a blak vertex, or with another white vertex. That is:jEWBj+2jEWW j = 6jT�Bj. Combining these relations we have: 2jT�Bj+6 � jEWBj � 3jBj;and realling that jT j = mnp we �nally obtain: jBj � 2mnp=5 + 6=5. 25. Conluding RemarksIn this paper we have disussed the propagation of faulty behaviour in a distributedsystem, under various disiplines of majority voting among neighbours. In partiular we havestudied upper and lower bounds to the size of the on�gurations of faulty verties (dynamos)that ause the whole system to fail. The upper bounds are onstrutive, that is, we haveexhibited the dynamos of minimum size that we were able to derive. The lower boundshave instead been derived with ombinatorial arguments, making use of the properties of apartiular family of graphs alled dense trees.This lassial problem had been previously studied for two-dimensional network topolo-gies only. Here we have examined three-dimensional meshes with toroidal losures. Theproblems thus arising are muh harder than in two dimensions. The proposed solutions arenot always strit, in the sense that the upper and lower bounds to the size of dynamos agreein order of magnitude, but have idential terms of higher order only in the ase of strongmajority. See table for a summary of results. Finding bounds mathing exatly, as done inthe literature for two-dimensional meshes, is an open problem of not easy solution.We regard this work as an approah to the study of majority-based fault toleranein higher dimensions. Several hanges in the topology are obviously possible. In partiular,our disussion has been direted to meshes with toroidal onnetions, to avoid the bordere�ets ourring in simple meshes. Our tehniques, however, an be immediatly extendedto this ase.Referenes[1℄ Z. Agur. Fixed points of majority rule ellular automata with appliation to plastiity andpreision of the immune system. Complex Systems, 2:351{357, 1988.[2℄ Z. Agur, A. S. Fraenkel, and S. T. Klein. The number of �xed points of the majority rule.Disrete Mathematis, 70:295{302, 1988.[3℄ J-C Bermond, D. Peleg. The power of small oalitions in graphs. In Pro. of 2nd Colloquiumon Strutural Information and Communiation Complexity, 173-184, 1995.[4℄ J-C Bermond, J. Bond, D. Peleg, S. Perennes. Tight bounds on the size of 2-monopolies InPro. of 3rd Colloquium on Strutural Information and Communiation Complexity, 170-179,1996.[5℄ R. De Priso, A. Monti, L. Pagli. EÆient testing and reon�guration of VLSI linear arrays.To appear in Theoretial Computer Siene.[6℄ P. Flohini, F. Geurts, N. Santoro. Dynami majority in general graphs and hordal rings.In Pro. 25-th Intern. Workshop on Graph Theoreti Conepts in Computer Siene, Asona1999.
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