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tIn a distributed system with dynami
 behaviour based on majority rules, a dynamois a pattern of initial faults whi
h may lead the entire system to fail. The properties ofdynamos have been extensively studied for di�erent plane topologies, and for the butter
yfamily of 
onne
tions. Here we investigate dynamos in three-dimensional toroidal meshes, asan approa
h to the study of majority-based fault toleran
e in multi-dimensional stru
tures.We establish lower and upper bounds on the number of faulty elements needed for a systembreak-down, both for irreversible and monotone failures, under two basi
 majority rules.Key words: distributed 
omputing, three-dimensional mesh, majority rule, dynamo,fault toleran
e. 1. Introdu
tionIn a distributed system, faulty elements 
an propagate wrong information throughtheir neighbors. A formal tool to study fault propagation is majority voting, whi
h applieswhen a vertex v performs an examination of the di�erent 
opies of 
ru
ial data distributedamong its neighbours [20℄. If the majority of su
h neighbours has 
orrupted data, the dataof v also be
ome 
orrupted, and v is hen
eforth indistinguishable from a faulty vertex.Majority voting is largely applied in distributed proto
ols for 
onsensus, data base
onsisten
y, mutual ex
lusion, 
ryptographi
 key distribution, and other appli
ations of dis-tributed 
omputing. The pro
ess that takes pla
e in the network obeys, in essen
e, to thefollowing elementary model. Initially ea
h vertex is in one of two states (
olors), bla
k =faulty or white = non-faulty. Assuming that the network works syn
hronously, all verti
esre
olor themselves either bla
k or white at ea
h step, a

ording to the 
olor of the \majority"



of their neighbors. Color propagation depends on how majority is de�ned. A major problemis to study the initial assignments of 
olors from whi
h, after a �nite number of steps, anall-bla
k �xed point is rea
hed. After Peleg [21℄, an initial set of bla
k verti
es 
ausing su
ha total degradation is 
alled dynamo, short for \dynami
 monopoly". Note that this pro
essmay be asyn
hronous as well, as the lo
al 
lo
ks may not be syn
hronized.If ea
h fault in the network is permanent, a dynamo is 
alled irreversible. If a fault
an instead be mended by majority, the dynamo is reversible, and a vertex may swit
h 
olorseveral times a

ording to a 
hanging neighbourhood. In the latter 
ase, the dynamo ismonotone if the set of bla
k verti
es B(t) existent at time t is a proper subset of B(t + 1),for all t. Clearly irreversible dynamos are always monotone.The dynami
s of majority rules have been extensively studied for 
ellular automata,and for 
ertain families of graphs. Resear
h has fo
used on the periodi
 dynami
s of �nitegraphs [11, 23℄; in�nite graphs [18℄; �nite rings [2, 12℄; and lines [16, 17℄. Dynami
 majorityhas also been applied to the study of the immune system [1℄, and to image pro
essing [10℄.Some results in distributed systems are related to 
atastrophi
 fault patterns [5, 19, 24℄,and \monopolies" (i.e., 
on�gurations that 
onverge to the all bla
k state in a single step)[3, 4, 20℄.A general study of dynamos is quite re
ent. For the monotone 
ase, some generallower and upper bounds on the size of dynamos have been estabilished in [21℄, and spe
i�
bounds for two-dimensional toroidal meshes of di�erent types have been given in [9℄.Thespeed of 
onvergen
e to a �nal 
on�guration is studied in [7℄. Irreversible dynamos havebeen examined for 
hordal rings [6℄, two-dimensional meshes [8℄, and butter
ies [15℄.In this paper we 
onsider irreversible and monotone dynamos in three-dimensionaltoroidal meshes fo
using on size, that is, on the minimum number of initial bla
k elementsneeded to rea
h the �xed point. While meshes 
onstitute one of the simplest and mostnatural ways of 
onne
ting pro
essors in a network, not mu
h has been done in more thantwo dimensions. In parti
ular the study of dynamos for this 
ase is new, while the problemsarising are mu
h harder to solve. We then 
onsider our 
ontribution as an approa
h to thestudy of majority-based fault toleran
e in higher dimensions. Our results are summarized intable . 2. Basi
 De�nitionsLet us 
onsider an m � n � p mesh M and denote with vx;y;z, 0 � x � m � 1,0 � y � n� 1, 0 � z � p� 1, a vertex of M . If M is 
losed as a torus, the verti
es in ea
hof the border planes are 
onne
ted to the verti
es in 
orresponding positions in the oppositeborder plane, thus forming ring 
onne
tions in ea
h of the three dimensions. Formally, wehave:De�nition 1 Toroidal MeshA toroidal mesh of m � n � p verti
es is a mesh where ea
h vertex vx;y;z, 0 � x � m � 1,0 � y � n� 1, 0 � z � p� 1, is 
onne
ted to the six verti
es v(x�1) mod m;y;z, v(x+1) modm;y;z,vx;(y�1) mod n;z, vx;(y+1) mod n;z, vx;y;(z�1) mod p, vx;y;(z+1) mod p.



Simple Majority Strong MajorityLower Bound Upper Bound Lower Bound Upper BoundIrreversible mn=3 + �(1) (mn+mp + np)=3 mnp=4 + �(1) mnp=4Dynamos +�(m+ n+ p) +�(mn+mp)Monotone 2mn=3 + �(1) 2(mn +mp+ np)=3 2mnp=5 + �(1) 2mnp=5Dynamos +�(m+ n+ p) +�(mn+mp)Table 1: Minimum 
ardinalities of irreversible and monotone dynamos for toroidal meshesof m�n�p verti
es. � denotes a stri
t asymptoti
 order of magnitude. When the formulaeare not symmetri
 in m;n; p, apply the values yielding highest lower bounds, or lowest upperbounds. (For example in the lower bound mn=3 + �(1), m and n have the greatest valuesamong m;n; p).For 
ovenien
e, toroidal meshes will be displayed in a Cartesian spa
e x; y; z, withX; Y and Z denoting the three fa
es of the meshes lying in the 
oordinate planes orthogonalto the axes x; y and z, respe
tively. For example X in
ludes the n � p verti
es v0;y;z with0 � y � n� 1, 0 � z � p� 1. Similarly, Y 
ontains m � p verti
es, and Z 
ontains m � nverti
es. X and Y share an edge 
ontaining the p verti
es v0;0;z with 0 � z � p� 1, et
.Majority is de�ned as follows [21℄:De�nition 2 Irreversible-majority rule. A vertex v be
omes bla
k if the majority of itsneighbours are bla
k. In 
ase of tie v be
omes bla
k (simple majority), or keeps its 
olor(strong majority). Reversible-majority rule. A vertex v takes the 
olor of the majority ofits neighbours. In 
ase of tie v be
omes bla
k (simple majority), or keeps its 
olor (strongmajority).Note that bla
k (i.e. faulty) verti
es tend to propagate their faults. In the irreversibleand reversible 
ases, simple (respe
tively: strong) majority asks for the presen
e of at leastthree (respe
tively: four) bla
k neighbours to 
olor bla
k a vertex. In the reversible 
ase, atleast four white neighbours are needed to 
hange the 
olor from bla
k to white. We 
an nowformally de�ne dynamos.De�nition 3 A simple (respe
tively: strong) irreversible dynamo is an initial set of bla
kverti
es from whi
h an all bla
k 
on�guration is rea
hed in a �nite number of steps underthe simple (respe
tively: strong) irreversible-majority rule.A simple (respe
tively: strong) monotone dynamo is an initial set of bla
k verti
es from whi
han all bla
k 
on�guration is rea
hed in a �nite number of steps under the simple (respe
tively:



strong) reversible-majority rule, su
h that no bla
k vertex ever turns white during the pro
ess(monotone bla
k propagation).Reversible majority is applied here only in the 
ase of monotone dynamos, where itnever happens that a bla
k vertex has a majority of white neighbours. Then any set of bla
kverti
es rea
hed during the pro
ess properly in
ludes all the bla
k sets rea
hed at previoussteps. Note that irreversible dynamos always exhibit a monotone bla
k propagation.De�nition 4 A k-white (respe
tively: k-bla
k) blo
k W is a restri
tion of the mesh to asubset of all white (respe
tively: all bla
k) verti
es, ea
h of whi
h has at least k neighboursin W . In parti
ular a whole white plane se
tion on the mesh orthogonal to one of the 
oor-dinate axes is a 4-white blo
k (re
all the torus 
losure at the borders). Two adja
ent wholewhite rows form a 3-white blo
k. A whole bla
k three-dimensional re
tangle RS, of sizesmS � nS � pS, with mS < m; nS < n; pS < p, is a 3-bla
k blo
k (the 
orner verti
es havethree bla
k neighbours).The interest of dete
ting blo
ks in the mesh should be 
lear. A white blo
k W is aset of white verti
es that will never turn bla
k under the 
hosen majority rule. The presen
eof W prevents the existen
e of a dynamo. A bla
k blo
k is a set of bla
k verti
es that willnever turn white in the reversible 
ase. In a monotone dynamo, all the bla
k verti
es mustbelong to 3-bla
k blo
ks.Finally, a new de�nition of tree introdu
ed in [14℄ is 
ru
ially 
onne
ted with the
on
ept of blo
k. We have:De�nition 5 [14℄ A k-dense tree with k � 1 integer, is a graph T = (V;E) with at least onevertex v (leaf) of degree � k, su
h that the restri
tion of T to V �fvg has again at least onevertex of degree � k.Note that, for k = 1, the de�nition of k-dense tree 
oin
ides with the usual de�nitionof tree. It has been shown in [14℄ that a k-dense tree of n verti
es has at most kn�k(k+1)=2edges. 3. Irreversible DynamosNetwork evolutions in irreversible and reversible dynamos are quite di�erent. Wetreat the two 
ases separately, further dividing our dis
ussion between simple and strongmajority. Four 
ases then emerge, for ea
h of whi
h we derive upper and lower bounds tothe size of dynamos.3.1 Simple Irreversible MajorityLet us start with the 
onstru
tion of a dynamo following the simple irreversiblemajority rule. This gives an upper bound to the size of dynamos under su
h a rule.



Theorem 1 An m � n � p toroidal mesh M admits a simple irreversible dynamo S withjSj = (mn +mp+ np)=3 + �(m + n+ p).Proof (Constru
tive). Consider the three fa
es X; Y; Z of M . Re
all that X and Y 
ontainn � p and m � p verti
es, respe
tively, and share a side e of p verti
es. Refer to �gure 1.Divide X in groups of three 
onse
utive rows starting from the side opposite to e, and 
olorthe verti
es of ea
h group as follows. In the �rst row all verti
es are white, ex
ept for theleftmost one; the se
ond and the third row hold alternating 
olors, respe
tively starting witha bla
k and with a white vertex. If n is not multiple of 3, make the same 
on�gurationwithout the last row, or the last two rows. This 
olors X up to side e. Continue on Y withthe same 
oloring, in the m� 1 rows following e. We have dn+m�13 e(p+ 1) bla
k verti
es onthe 
ombination of fa
es XjY . Color now Z as indi
ated in �gure 1 (note that the leftmost
olumn, and two bottom rows, are all white). We have dm�23 e(n� 1) bla
k verti
es on Z. Intotal we have (mn+mp + np)=3 + �(m + n+ p).In ea
h group of three 
onse
utive rows in XjY , two of them be
ome immediatelybla
k be
ause ea
h white vertex has three bla
k neighbours. Also the leftmost 
olumnbe
omes bla
k in the �rst step. In ea
h 
onse
utive step two new 
olumns, adja
ent to theones 
olored bla
k in the previous step, also be
ome bla
k until XjY is 
ompletely bla
k.This makes bla
k the two sides of X and Y 
ommon with Z (say, the leftmost 
olumnand the bottom row of Z in �gure 1), so that Z is wholly 
olored bla
k with a similarme
hanism. On
e the three orthogonal plane se
tions X, Y , Z are all bla
k, the remaining(m � 1)� (n � 1)� (p� 1) submesh be
omes bla
k starting from the eight 
orner verti
esthat have now three bla
k neighbours in X, Y , Z. 2Re
all now that the presen
e of a 4-white blo
k in the mesh prevents any simpledynamo to exist. The following lower bound theorem 
ru
ially relies on this fa
t.Theorem 2 Let S be a simple irreversible dynamo for an m�n�p toroidal mesh M . ThenjSj � max (mn=3; mp=3; np=3) + �(1).Proof Consider the n � p 
hains of m verti
es in
ident to the fa
e X of M and parallel tothe x axis. Some of them must in
lude bla
k verti
es in order to prevent the existen
e of4-white blo
ks. Proje
t su
h bla
k verti
es onto X, along the dire
tion x. Now the existen
eof a 
y
le (
losed path) of white verti
es in X 
learly 
orresponds to a 4-white blo
k in threedimensions, in the form of a 
ylinder parallel to x. (For example no white 
y
le exists onX with the pattern of bla
k verti
es shown in �gure 1, then no 
ylindri
al 4-white blo
kparallel to x exists in that mesh). From a theorem for strong majority in two-dimensionalmeshes proved in [8℄, at least dnp+13 e bla
k verti
es must exist in X to prevent the formationof white 
y
les. then at least the same number of bla
k verti
es must exist inM , to prevent,by their proje
tions, the existen
e of 
y
les in X. Applying this argument also to the fa
esY and Z the thesis immediately follows. 23.2 Strong Irreversible MajorityStrong irreversible majority is simpler to study than the previous 
ase. The followingtheorem establishes an upper bound to the size of dynamos.
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oloring for simple irreversible majority. In the example m = 10, n = 8,p = 6.Theorem 3 An m � n � p toroidal mesh M admits a strong irreversible dynamo S withjSj = mnp=4 + �(mn+mp).Proof Consider the plane se
tions Pi of M , 0 � i � m� 1, parallel to fa
e X and pla
ed atinteger x 
oordinates (in parti
ular, P0 = X). On the se
tions Pi, with i even, pla
e bla
kand white verti
es as in a 
he
kboard (�gure 2), for a total of dnp2 e � dm2 e bla
k verti
es. Onthe se
tions Pi, with i odd, pla
e alternate bla
k and white verti
es on the two sides a, blaying on Y and Z (�gure 2), for a total of dn+p�12 e � bm2 
 bla
k verti
es. The total numberof bla
k verti
es is then mnp=4 + �(mn +mp).The white verti
es of all Pi, i even, be
ome bla
k in one step, be
ause all of them havefour bla
k neighbours. Then, the white verti
es of a and b on Pi, i odd, be
ome bla
k. Thenall the other verti
es of these se
tions be
ome bla
k starting from the four 
orner verti
esv1; v2; v3; v4. 2To determine a lower bound that mat
hes the upper bound of theorem 3 we will make
ru
ial use of the 
on
ept of k-dense tree. In fa
t, to 
hange the 
olor of all the white verti
esinto bla
k, at least one of them must have at most two white neighbours at any step. Thatis, the restri
tion of the mesh to the subgraph of white verti
es must be a 2-dense tree. Wehave:Theorem 4 Let S be a strong irreversible dynamo for an m�n�p toroidal mesh M . ThenjSj � mnp=4 + �(1).
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oloring for strong irreversible majority.Proof Let T and E be the sets of verti
es and edges of the mesh. Let B and W = T � Bbe the subsets of bla
k and white verti
es, respe
tively. And let EW be the subset of edges
onne
ting pairs of white verti
es. Consider the subset E �EW of edges having at least onebla
k extreme. We have jEj� jEW j � 6jBj, where the equality is met when ea
h vertex in Bis 
onne
ted with exa
tly one vertex in W . As already observed, white verti
es must forma 2-dense tree, that is jEW j � 2jW j � 2 � 3=2 = 2jT j � 2jBj � 3 (see se
tion 2 for the upperbound on the number of edged in a k-dense tree). Combining the two inequalities above wehave: jEj � jEW j + 6jBj � 2jT j + 4jBj � 3. Noting that jT j = mnp and jEj = 3mnp, weimmediately derive: jBj � mnp=4 + 3=4. 24. Monotone DynamosAs for the irreversible 
ase, 
olor propagation 
ru
ially depends on the type of ma-jority. Here, however, we must \prote
t" bla
k verti
es to prevent them from be
omingwhite.4.1 Simple Monotone MajorityAn upper bound to the size of dynamos with simple monotone majority is givenin the following theorem. The novelty, 
ompared with the irreversible 
ase, is that bla
kverti
es must now be 
lustered into 3-bla
k blo
ks to guarantee monotoni
ity.Theorem 5 An m � n � p toroidal mesh M admits a simple monotone dynamo S withjSj = 2(mn +mp+ np)=3 + �(m+ n + p)Proof As in theorem 1, 
onsider the fa
es X, Y of M with the 
ommon side e. Refer to�gure 3. Color X and Y by setting two bla
k 
olumns for ea
h group of three, and twobla
k rows on X at the side opposite to e. We then have d2p=3e(m + n � 1) + b2p=3
bla
k verti
es on the 
ombination of fa
es XjY . Assume that the leftmost 
olums of XjY
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oloring for simple monotone majority.lie on the two sides of X and Y 
ommon to Z (say, the left 
olumn and the bottom rowof Z). These two sides then appear bla
k in Z. Color the remaining verti
es of Z asindi
ated. We have d2(n � 2)=3e(m � 1) + d(n � 1)=3e new bla
k verti
es in Z, for a totalof 2(mn +mp+ np)=3 + �(m+ n+ p) bla
k verti
es in M .All the white verti
es of XjY be
ome bla
k in pairs, starting from the pairs markedv1; v2 that have three bla
k neighbours from the beginning. Similarly, the white verti
es ofZ be
ome bla
k starting from the pairs marked v3; v4. On
e the three fa
es X, Y , Z are allbla
k, the whole mesh is 
olored bla
k as indi
ated in the proof of theorem 1. To 
ompletethe proof note that all the initial bla
k verti
es form a 3-bla
k blo
k, and ea
h new bla
kvertex is adjoined to su
h a blo
k, so that no bla
k vertex ever turns white. 2To derive a lower bound to the size of dynamos, re
all that the presen
e of 4-whiteblo
ks prevents a dynamo to exist. We have:Theorem 6 Let S be a simple monotone dynamo for an m� n� p toroidal mesh M . ThenjSj � max (2np=3; 2mp=3; 2mn=3) + �(1).Proof As in theorem 2, proje
t the bla
k verti
es of M onto X along the dire
tion x. Onthis new 
on�guration, let T and E be the sets of verti
es and edges of X; B be the subsetof bla
k verti
es in X; EW be the subset of edges in X with two white extremes. For S tobe a dynamo of M , no white 
y
le must be present in X, be
ause one su
h a 
y
le would
orrispond to a 4-white blo
k inM in the form of a 
ylinder parallel to x. That is, the whiteverti
es in X must form a forest. We then have: jEW j � jT j � jBj � 1, where T � B is thesubset of white verti
es in X.Sin
e the bla
k verti
es ofM must form a 3-bla
k blo
k, and ea
h vertex has only twoneighbours with the same y and z 
oordinates, ea
h bla
k vertex v 2 B must be adja
entto at least another bla
k vertex u 2 B. In fa
t, B 
an be partitioned into three subsetsB1; B2; B3 (�gure 4) su
h that B1 is a set of 1-dense trees (or simply a forest) with at least
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tions on X of 3-bla
k blo
ks.two verti
es ea
h; B2 is a set of 2-dense trees with all verti
es of degree � 2; and B3 is a setof 3-dense trees with all verti
es of degree � 3. In parti
ular, ea
h dense tree in B3 musto

upy two whole adja
ent rows or 
olumns. Consider now the set E � EW of edges in Xhaving at least one bla
k extreme. We have: jEj � jEW j � 72 jB1j + 124 jB2j + 52 jB3j, wherethe equality is met when ea
h set of B1 
ontains exa
tly two elements, with a total of sevenin
ident edges in X; ea
h set of B2 
ontains exa
tly four elements, with a total of twelvein
ident edges in X; and ea
h set of B3 is 
omposed of two adja
ent rows, or two adja
ent
olumns, so that ea
h of its elements has one edge 
onne
ted to a white vertex and threeedges 
onne
ted to bla
k verti
es, with an average of 5/2 in
ident edges per vertex in X.Combining the two inequalities derived thus far; noting that jEj = 2np and jT j = np;and letting jB1j = �1jBj, jB2j = �2jBj, jB3j = (1� �1 � �2)jBj we have: jEj � jT j � jBj �1 + (72�1 + 3�2 + 52(1 � �1 � �2))jBj, hen
e jBj � 2(np+1)2�1+�2+3 . Note now that for a bla
kvertex v 2 B1 to be part of a 3-bla
k blo
k, all the m verti
es of M with the same y andz 
oordinates of v must be bla
k. Similarly, for ea
h bla
k vertex v 2 B2, at least anothervertex of M with the same y and z 
oordinates of v must be bla
k, while the verti
es in B3already form a 3-bla
k blo
k. Letting BM be the set of bla
k verti
es in M we then have:jBM j � mjB1j+2jB2j+ jB3j � 2(np+1)2�1+�2+3(�1(m� 1)+�2+1). It 
an be immediately veri�edthat this expression, with the obvious 
ondition m � 3, is minimized for �1 = �2 = 0 (i.e.,all the bla
k verti
es in X belong to B3). Hen
e we have: jBM j � 2(np+1)3 .Applying the same argument to the proje
tions of bla
k verti
es onto Y and Z, thethesis immediately follows. 24.2 Strong Monotone MajorityIn this �nal subse
tion we impose monotoni
ity under strong majority, with a 
om-bination of the arguments used for strong irreversible majority (subse
tion 3.2), and simplemonotone majority (subsetioon 4.1). In parti
ular, bla
k verti
es must be 
lustered into3-bla
k blo
ks. As before, the upper bound on the size of dynamos is 
onstru
tive. We have:Theorem 7 An m � n � p toroidal mesh M admits a simple monotone dynamo S withjSj = 2mnp=5 + �(mn +mp)
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oloring for strong monotone majority.Proof As in the proof of theorem 3, 
onsider the plane se
tions Pi of M , 0 � i � m � 1,parallel to the fa
e X, with P0 = X. Refer to �gure 5. On ea
h of the se
tions Pi, with ieven, pla
e the white verti
es at \knight's distan
e", su
h that ea
h white vertex has fourbla
k neighbours, and ea
h bla
k vertex has three bla
k neighbours. Note that there are �vewhite verti
es in ea
h square portion of Pi of side �ve, hen
e there are d2025npe bla
k verti
esin ea
h se
tion Pi, with i even, for a total of d2025npedm2 e � 2mnp=5 bla
k verti
es in all su
hse
tions. On the se
tions Pi, with i odd, pla
e the bla
k verti
es along a path from thetop-left 
orner to the bottom-right 
orner, su
h that the verti
es in the same positions in these
tions Pi of even indi
es are all bla
k, for a total of (n + p� 1)bm2 
 bla
k verti
es. Thesebla
k verti
es have one or two bla
k neighbours in Pi, plus two bla
k neighbours in Pi�1 andPi+1. We then have a total of 2mnp=5 +�(mn+mp) bla
k verti
es in M , all 
lustered in a3-bla
k blo
k.The white verti
es of all Pi, i even, be
ome bla
k in one step, be
ause all of themhave four bla
k neighbours. Then, the white verti
es on Pi, i odd, be
ome bla
k in su

essivesteps, starting from the verti
es marked v in the �gure. 2To prove a mat
hing lower bound, re
all that to 
hange the 
olor of all white verti
esinto bla
k, the restri
tion of the mesh to su
h verti
es must be a 2-dense tree. We have:Theorem 8 Let S be a simple monotone dynamo for an m� n� p toroidal mesh M . ThenjSj � 2mnp=5 + �(1).Proof As in the proof of theorem 4, let T and E be the sets of verti
es and edges of the mesh;B and W = T � B be the subsets of bla
k and white verti
es. Furthermore, let EWW andEWB be the subsets of edges 
onne
ting two white verti
es, and a white and a bla
k vertex,respe
tively. Sin
e the white verti
es must form a 2-dense tree we have: jEWW j � 2jT�Bj�3(see se
tion 2). Sin
e the bla
k verti
es must be 
lustered into 3-bla
k blo
ks, ea
h bla
kvertex 
an have at most three white neighbours, that is: jEWBj � 3jBj. A relation between



jEWW j and jEWBj 
an be established by noting that ea
h white vertex v has six in
identedges, ea
h one 
onne
ting v with a bla
k vertex, or with another white vertex. That is:jEWBj+2jEWW j = 6jT�Bj. Combining these relations we have: 2jT�Bj+6 � jEWBj � 3jBj;and re
alling that jT j = mnp we �nally obtain: jBj � 2mnp=5 + 6=5. 25. Con
luding RemarksIn this paper we have dis
ussed the propagation of faulty behaviour in a distributedsystem, under various dis
iplines of majority voting among neighbours. In parti
ular we havestudied upper and lower bounds to the size of the 
on�gurations of faulty verti
es (dynamos)that 
ause the whole system to fail. The upper bounds are 
onstru
tive, that is, we haveexhibited the dynamos of minimum size that we were able to derive. The lower boundshave instead been derived with 
ombinatorial arguments, making use of the properties of aparti
ular family of graphs 
alled dense trees.This 
lassi
al problem had been previously studied for two-dimensional network topolo-gies only. Here we have examined three-dimensional meshes with toroidal 
losures. Theproblems thus arising are mu
h harder than in two dimensions. The proposed solutions arenot always stri
t, in the sense that the upper and lower bounds to the size of dynamos agreein order of magnitude, but have identi
al terms of higher order only in the 
ase of strongmajority. See table for a summary of results. Finding bounds mat
hing exa
tly, as done inthe literature for two-dimensional meshes, is an open problem of not easy solution.We regard this work as an approa
h to the study of majority-based fault toleran
ein higher dimensions. Several 
hanges in the topology are obviously possible. In parti
ular,our dis
ussion has been dire
ted to meshes with toroidal 
onne
tions, to avoid the bordere�e
ts o

urring in simple meshes. Our te
hniques, however, 
an be immediatly extendedto this 
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