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The term inherently parallel computation refers to a computation that can be performed successfully
only on a parallel computer with an appropriate number of processors. Examples are computations that
involve: time-varying variables, time-varying complexity, rank-varying complexity, interacting variables,
uncertain time constraints, and variables obeying mathematical constraints. These computations also provide
counterexamples to the existence of a universal computer [2]-[9], [13], [18]-[21].

1 Computational Models

A time unit is the length of time required by a processor to perform a step of its computation, consisting
of three elementary operations: a read operation in which it receives a constant number of fixed-size data
as input, a calculate operation in which it performs a fixed number of constant-time arithmetic and logical
calculations (such as adding two numbers, comparing two numbers, and so on), and a write operation in
which it returns a constant number of fixed-size data as output.

A sequential computer, consists of a single processor. A parallel computer has n processors, numbered 1
to n, where n ≥ 2.

2 Time-Varying Variables

For a positive integer n larger than 1, we are given n functions, each of one variable, namely, F0, F1, . . . ,
Fn−1, operating on the n physical variables x0, x1, . . . , xn−1, respectively. Specifically, it is required to
compute Fi(xi), for i = 0, 1, . . ., n − 1. For example, Fi(xi) may be equal to x2

i . What is unconventional
about this computation, is the fact that the xi are themselves functions that vary with time. It is therefore
appropriate to write the n variables as x0(t), x1(t), . . . , xn−1(t), that is, as functions of the time variable t.
It is important to note here that, while it is known that the xi change with time, the actual functions that
effect these changes are not known (for example, xi may be a true random variable). It takes one time unit
to evaluate Fi(xi(t)). The problem calls for computing Fi(xi(t)), 0 ≤ i ≤ n − 1, at time t = t0. The fact
that xi(t) changes with the passage of time means that, for k > 0, not only is each value xi(t0 + k) different
from xi(t0), but also the latter cannot be obtained from the former.

A sequential computer fails to compute all the Fi as desired. Indeed, suppose that x0(t0) is initially
operated upon. By the time F0(x0(t0)) is computed, one time unit would have passed. At this point, the
values of the n − 1 remaining variables would have changed. The same problem occurs if the sequential
computer attempts to first read all the xi, one by one, and store them before calculating the Fi.

By contrast, a parallel computer consisting of n independent processors may perform all the computations
at once: For 0 ≤ i ≤ n − 1, and all processors working at the same time, processor i computes Fi(xi(t0)),
leading to a successful computation.

3 Time-Varying Computational Complexity

Here, the computational complexity of the problems at hand depends on time (rather than being, as usual,
a function of the problem size). Thus, for example, tracking a moving object (such as a spaceship racing
towards Mars) becomes harder as it travels away from the observer.
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Suppose that a certain computation requires that n independent functions, each of one variable, namely,
f0(x0), f1(x1), . . . , fn−1(xn−1), be computed. Computing fi(xi) at time t requires C(t) = 2t operations,
for t ≥ 0 and 0 ≤ i ≤ n − 1. Further, there is a deadline for reporting the results of the computations: All
n values f0(x0), f1(x1), . . . , fn−1(xn−1) must be returned by the end of the third time unit, that is, when
t = 3.

It should be easy to verify that no sequential computer, capable of exactly one constant-time operation
per step (that is, per time unit), can perform this computation for n ≥ 3. Indeed, f0(x0) takes C(0) = 20 = 1
time unit, f1(x1) takes another C(1) = 21 = 2 time units, by which time three time units would have elapsed.
At this point none of f2(x2), . . . , fn−1(xn−1) would have been computed. By contrast, an n-processor parallel
computer solves the problem handily. With all processors operating simultaneously, processor i computes
fi(xi) at time t = 0, for 0 ≤ i ≤ n− 1. This consumes one time unit, and the deadline is met.

4 Rank-Varying Computational Complexity

Suppose that a computation consists of n stages. There may be a certain precedence among these stages,
or the n stages may be totally independent, in which case the order of execution is of no consequence to
the correctness of the computation. Let the rank of a stage be the order of execution of that stage. Thus,
stage i is the ith stage to be executed. Here we focus on computations with the property that the number
of operations required to execute stage i is C(i), that is, a function of i only.

When does rank-varying computational complexity arise? Clearly, if the computational requirements
grow with the rank, this type of complexity manifests itself in those circumstances where it is a disadvantage,
whether avoidable or unavoidable, to being ith, for i ≥ 2. For example, the precision and/or ease of
measurement of variables involved in the computation in a stage s may decrease with each stage executed
before s.

The same analysis as in the previous section applies by substituting the rank for the time.

5 Interacting Variables

A physical system has n variables, x0, x1, . . ., xn−1, each of which is to be measured or set to a given value
at regular intervals. One property of this system is that measuring or setting one of its variables modifies
the values of any number of the system variables unpredictably.

A sequential computer measures one of the values (x0, for example) and by so doing it disturbs the
equilibrium, thus losing all hope of recording the state of the system within the given time interval. Similarly,
the sequential approach cannot update the variables of the system properly: Once x0 has received its new
value, setting x1 disturbs x0 unpredictably.

A parallel computer with n processors, by contrast, will measure all the variables x0, x1, . . . , xn−1

simultaneously (one value per processor), and therefore obtain an accurate reading of the state of the system
within the given time frame. Consequently, new values x0, x1, . . . , xn−1 can be computed in parallel and
applied to the system simultaneously (one value per processor).

6 Uncertain Time Constraints

In this paradigm, we are given a computation each of whose components, namely, the input phase, the
calculation phase, and the output phase, needs to be computed by a certain deadline. However, unlike the
standard situation in conventional computation, the deadlines here are not known at the outset. In fact,
and this is what makes this paradigm truly unconventional, we do not know at the moment the computation
is set to start, what needs to be done, and when it should be done. Certain physical parameters, from the
external environment surrounding the computation, become spontaneously available. The values of these
parameters, once received from the outside world, are then used to evaluate two functions, call them f1 and
f2, that tell us precisely what to do and when to do it, respectively.
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The difficulty posed by this paradigm is that the evaluation of the two functions f1 and f2 is itself
quite demanding computationally. Specifically, for a positive integer n they operate on n variables (the
physical parameters). Only a parallel computer equipped with n processors can succeed in evaluating the
two functions on time to meet the deadlines.

7 Computations Obeying Mathematical Constraints

There exists a family of computational problems where, given a mathematical object satisfying a certain
property, we are asked to transform this object into another which also satisfies the same property. Further-
more, the property is to be maintained throughout the transformation, and be satisfied by every intermediate
object, if any. More generally, the computations we consider here are such that every step of the computation
must obey a certain predefined constraint. (Analogies from popular culture include picking up sticks from a
heap one by one without moving the other sticks, drawing a geometric figure without lifting the pencil, and
so on.)

7.1 Rewriting Systems

An example of such transformations is provided by rewriting systems. From an initial string ab, in some
formal language consisting of the two symbols a and b, it is required to generate the string (ab)n, for n > 1.
Thus, for n = 3, the target string is ababab. The rewrite rules to be used are: a → ab and b → ab.
Throughout the computation, no intermediate string should have two adjacent identical characters. Such
rewrite systems (also known as L-systems) are used to draw fractals and model plant growth [22]. Here we
note that applying any one of the two rules at a time causes the computation to fail (for example, if ab is
changed to abb, by the first rewrite rule, or to aab by the second).

A sequential computer can change only one symbol at once, thereby causing the adjacency condition
to be violated. By contrast, for a given n, a parallel computer with n processors can easily perform a
transformation on all the inputs collectively. The required property is maintained leading to a successful
computation. Thus, the string (ab)n is obtained in logn steps, with the two rewrite rules being applied
simultaneously to all symbols in the current intermediate string, in the following manner: ab, abab, abababab,
and so on. It is interesting to observe that a successful generation of (ab)n also provides an example of a
rank-varying computational complexity (as described in Section 4). Indeed, each legal string (that is, each
string generated by the rules and obeying the adjacency property) is twice as long as its predecessor (and
hence requires twice as many operations to be generated).

7.2 Sorting Variant

A second example of computations obeying a mathematical constraint is provided by a variant to the problem
of sorting. For a positive even integer n, where n ≥ 8, let n distinct integers be stored in an array A with n
locations A[0], A[1], . . ., A[n− 1], one integer per location. Thus A[j], for all 0 ≤ j ≤ n− 1, represents the
integer currently stored in the jth location of A. It is required to sort the n integers in place into increasing
order, such that:

1. After step i of the sorting algorithm, for all i ≥ 1, no three consecutive integers satisfy:

A[j] > A[j + 1] > A[j + 2]

for all 0 ≤ j ≤ n− 3.

2. When the sort terminates we have:

A[0] < A[1] < · · · < A[n− 1].
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This is the standard sorting problem in computer science, but with a twist. In it, the journey is more
important than the destination. While it is true that we are interested in the outcome of the computation
(namely, the sorted array, this being the destination), in this particular variant we are more concerned with
how the result is obtained (namely, there is a condition that must be satisfied throughout all steps of the
algorithm, this being the journey). It is worth emphasizing here that the condition to be satisfied is germane
to the problem itself; specifically, there are no restrictions whatsoever on the model of computation or the
algorithm to be used. Our task is to find an algorithm for a chosen model of computation that solves the
problem exactly as posed. One should also observe that computer science is replete with problems with an
inherent condition on how the solution is to be obtained. Examples of such problems include: inverting a
nonsingular matrix without ever dividing by zero, finding a shortest path in a graph without examining an
edge more than once, sorting a sequence of numbers without reversing the order of equal inputs, and so on.

An algorithm for an n/2-processor parallel computer solves the aforementioned variant of the sorting
problem handily by means of pairwise swaps applied to the input array A, during each of which A[j] and
A[k] exchange positions (using an additional memory location for temporary storage). A sequential computer,
and a parallel computer with fewer than (n/2) − 1 processors, both fail to solve the problem consistently,
that is, they fail to sort all possible n! permutations of the input while satisfying, at every step, the condition
that no three consecutive integers are such that A[j] > A[j+1] > A[j+2] for all j. In the particularly nasty
case where the input is of the form

A[0] > A[1] > · · · > A[n− 1],

any sequential algorithm and any algorithm for a parallel computer with fewer than (n/2)−1 processors fail
after the first swap.

It is interesting to note here that a Turing Machine with n/2 heads succeeds in solving the problem, yet
its simulation by a standard (single-head) Turing Machine fails to satisfy the requirements of the problem.
Indeed, suppose that the standard Turing Machine is presented with the input sequence A[0] > A[1] > · · · >
A[n− 1]:

1. It will either use the given representation of the input, and proceed to perform an operation (a swap,
for example), in which case it would fail after one step of the algorithm,

2. Or it will transform the given representation into a different encoding (perhaps one intended to capture
the behavior of the Turing Machine with n/2 heads) in preparation for the sort, in which case it would
again fail since the transformation itself constitutes an algorithmic step.

This is a surprising result as it goes against the common belief that any computation by a variant of the
Turing Machine can be effectively simulated by the standard model [15].

8 The Universal Computer Is A Myth

The Principle of Simulation is the cornerstone of computer science. It is at the heart of most theoretical
results and practical implements of the field such as programming languages, operating systems, and so on.
The principle states that any computation that can be performed on any one general-purpose computer can
be equally carried out through simulation on any other general-purpose computer [12, 14, 17]. At times, the
imitated computation, running on the second computer, may be faster or slower depending on the computers
involved. In order to avoid having to refer to different computers when conducting theoretical analyses, it
is a generally accepted approach to define a model of computation that can simulate all computations by
other computers. This model would be known as a Universal Computer U . Thus, Universal Computation,
which clearly rests on the Principle of Simulation, is also one of the foundational concepts in the field [11].

Our purpose here is to prove the following general statement: There does not exist a finite computational
device that can be called a Universal Computer. Our reasoning proceeds as follows. Suppose there exists a
Universal Computer capable of n elementary operations per step, where n is a finite and fixed integer. This
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computer will fail to perform a computation requiring n′ operations per step, for any n′ > n, and consequently
lose its claim of universality. Naturally, for each n′ > n, another computer capable of n′ operations per step
will succeed in performing the aforementioned computation. However, this new computer will in turn be
defeated by a problem requiring n′′ > n′ operations per step.

This reasoning is supported by each of the computational problems presented in Sections 2–7. As we
have seen, these problems can easily be solved by a computer capable of executing n operations at every step.
Specifically, an n-processor parallel computer led to a successful computation in each case. However, none of
these problems is solvable by any computer capable of at most n−1 operations per step, for any integer n > 1.
Furthermore, the problem size n itself is a variable that changes with each problem instance. As a result,
no parallel computer, regardless of how many processors it has available, can cope with a growing problem
size, as long as the number of processors is finite and fixed. This holds even if the computer purporting to
be universal is endowed with an unlimited memory and is allowed to compute for an indefinite amount of
time.

The preceding reasoning applies to any computer that obeys the finiteness condition, that is, a computer
capable of only a finite and fixed number of operations per step. It should be noted that computers obeying
the finiteness condition include all “reasonable” models of computation, both theoretical and practical, such
as the Turing Machine, the Random Access Machine, and other idealized models [23], as well as all of today’s
general-purpose computers, including existing conventional computers (both sequential and parallel), as well
as contemplated unconventional ones such as biological and quantum computers [3].

Therefore, the Universal Computer U is clearly a myth. As a consequence, the Principle of Simulation
itself (though it applies to most conventional computations) is, in general, a fallacy. In fact, the latter
principle is responsible for many other myths in computing, such as the Speedup Theorem, the Slowdown
Theorem, and Amdahl’s Law. Counterexamples for dispelling these and other myths are presented in [1, 10].
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jteršic, M., and Uhl, A., Eds., Part 2, Systems and Simulation, University of Salzburg, Salzburg, Austria
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