

Digit Recognizer Project

CISC859, Winter 2019, Dorothea Blostein

1 Overview

In this project you implement and test a classifier for recognizing digits 0..9 in a scanned
document image. Complete part 1 of the project in the first half of the term: write code to find digit
regions and measure features of these regions. Complete part 2 in the second half of term:
implement and test a digit recognizer that classifies regions based on their measured features. Your
final project report should describe

• your feature set and classifier design: what type of classifier did you choose, and why
• your training and test data
• the implementation of your classifier: describe code you wrote; describe how you

configured classification code provided by a toolbox
• classifier performance: provide an estimate for P(error) and discvuss the accuracy of

this estimate
• strong and weak points of your classification approach; avenues for improving the

classifier in future work.
Digit recognition has important practical applications such as reading zip codes for automated

mail sorting. (USA zip codes contain only digits only, in contrast to the mix of letters and digits in
Canadian postal codes.) Years of research and development have led to high-performance noise-
tolerant digit classifiers that perform well on a large variety of fonts and handwritten digits. That
level of performance is far beyond what you are expected to achieve in this course project.

This project exposes you to the challenges of classifier design, allowing you to experience the
wide range of choices in feature selection, type of classifier, training, and testing. For a successful
project you do not have to achieve super high recognition rates on noisy data with a big variety of
fonts. In past years, students have reported P(error) as low as a few percent or as high as 40%-
50%. A lot depends on the test data that is used: students who venture into testing with many
different fonts or with handwritten digits naturally end up with a higher P(error). Don’t obsess
about getting the highest possible recognition rate, but instead focus on gaining insights and useful
experience as you work on this project. Describe these insights in your project report: what aspects
of classifier implementation went as expected and what were the surprises? What did you learn?
Would you do anything differently next time? What challenges did you encounter in testing your
classifier, and how was the performance? If you had another year to work on the classifier, how
would you go about improving it?

2 Training and test data

A modest amount of training and test data (typeset digits) is available on the course website.
The files named “ones” “two” “threes” each contain many instances of the same digit, making
them convenient for classifier training. If you would like more training and test data you have the
following options.

• Use a scanner to obtain further images. Or to create more challenging images, use a
camera to photograph scenes that contain digits such as house numbers or license plates.
Locating digits in natural scenes images is a challenging image-processing problem; you
can omit this step by instead manually delineating each region that contains a digit.

• Use a public database of digit images.
o MNIST provides 70,000 handwritten digits http://yann.lecun.com/exdb/mnist; this

is a subset of a larger database available from NIST. This website
http://cis.jhu.edu/~sachin/digit/digit.html provides a subset of the MNIST data in
a format convenient for classifier training: 10 separate files, one per class, with
1000 training samples per class.

o The Chars74K dataset (Character Recognition in Natural Images) includes an
EnglishFnt dataset with both digits and alphabetic characters. These are typeset,
and include italic, bold and normal.

o Tell me about additional datasets you find, so that I can add them to this list.

3 Choice of programming language or classification environment

Use the programming language of your choice. You are welcome to use environments that
provide classification algorithms, such as MATLAB, R, Weka.
• If you write code from scratch in a language like Java or C you obtain a thorough understanding

of every detail of the classification algorithm. In evaluating projects I definitely take into
consideration that it is time-consuming and difficult to write code from scratch. Students
programming in C or Java need to restrict their implementation to relatively simple
classification algorithms.

• If you use a classification environment you can easily choose from a menu of classification
algorithms, compare various classifiers, and try classifier combination. The downside is that
you won’t understand the classification algorithms in as much detail as if you coded them
yourself. Very important is that you understand the ideas and algorithms you use! In your
project report write a brief description of each type of classifier you used (e.g. what is a
Random Decision Forest). Describe the parameters for each classifier. what they mean and
how you set them. Describe the testing protocol you use -- for example, describe what cross
validation is and what parameters you set.

4 Digit Recognizer Part 1: Feature extraction

Write a program that takes an image as input, finds the connected dark regions in the image,
and measures features of these regions. Section 1.4 of the course reader provides a brief
introduction to image processing.

4.1 Image file formats

An N by M image contains N*M pixels. A grayscale image typically has pixel values between
0 and 255, so one pixel can be stored per byte. In a binary image (black and white) each pixel
requires only one bit, allowing 8 pixels to be stored per byte.

Many different image file formats are in use, including GIF, JPEG, BMP, RFF, TIFF, PBM.
These files contain more than just a list of pixel values because such a list isn’t enough to
reconstruct the image. For example, a list of 10,000 pixel values might be a square image with 100
rows and 100 columns or a rectangular image with 500 rows and 20 columns. Each of the image
file formats starts with header information: the number of rows and columns in the image, the
number of bits per pixel, and perhaps other information related to file compression, comments,
image tagging.

4.2 Unix image utilities
Here are brief notes about a few unix image utilities. Other software environments provide
comparable utilities.
xv <filename> or xv <several filenames>
Display images in formats including gif, tiff, rff, pbm. Left click on the image to get the coordinates
and value of the pixel you clicked on. Right click to get an "xv controls" window to change the
size, display mode etc, as well as to save in various formats. The ColEdit (Colour-map edit) button
in the controls box brings up a second control box where you can drag the 2 control points on the
“intensity” plot to try out various thresholds. The xv utility does not display bmp files. To see bmp
files under unix, use gimp.
gimp or gimp <filename>
GNU image manipulation package. See online documentation and tutorials.
display <filename>
Another unix program to display an image. Menu of image-manipulation features such as “show
histogram”.

4.3 Suggested steps for finding digit regions and measuring features

The following steps are suggested for digit recognizer part 1. You are welcome to assist each other
on the programming aspects of this problem.

1. Find or write code for image I/O: you need to be able to read an image from a file into a 2D
array. C and Java programs that do this are provided on the course website.
• The C program accepts files in pgm format. See the README file.
• The Java program accepts GIF, JPEG, and bitmap. See the README file.

 Write code to make a simple image modification, and make sure that you can display the
result. For example, create a photographic negative of a gray-level image (with pixel values
from 0..255) by changing each pixel value A[i,j] to the new value 255-A[i,j].

2. Threshold the image (in preparation for step 3). The digit images on the course website are
clean and have a lot of space between digits. A wide range of thresholds work well for these
images. You can manually try a value (e.g. make all pixels with values ≥ 100 white, and

make all pixels with values < 100 black) and display the result to check if it’s ok. Note that
some image environments use 0 black and 255 white while others use the opposite.
 If you are using a scanner to obtain your own image files, you can choose whether the
scanner should produce a binary or grayscale or colour image. For this class project it is fine
to let the scanner do the thresholding and produce a binary image. But keep in mind that in
high-performance pattern recognition applications it is advisable to scan a grayscale image
and then apply a customized thresholding algorithm. For example, adaptive thresholding can
then be used to find different thresholds for different parts of the image; this is needed, for
example, when a book is put in a scanner and the parts of the page near the spine of the book
appear really dark in the scan.

3. Write a program (or use an image utility) to find connected black regions in the binary image.
Simplifying assumptions:
• Each connected region is a symbol. In digit recognition we don’t have to deal with multi-

part symbols such as "i" "j" “=”.
• Segmentation problems do not occur. The digit images on the course website contain

widely-spaced digits that are well inked. This avoids two types of segmentation problems
that are common in noisier document images: (1) a symbol is split into pieces because of
insufficient inking, and (2) several symbols are merged because they bleed together due
to close spacing or too much inking. Segmentation problems are difficult to handle in real-
world applications. The development of robust segmentation algorithms continues to be
an active area of research.

 Finding regions does not require you to implement an edge detector. Instead, region growing
can be done directly as follows, using a flood fill algorithm. Scan the image to find a black
pixel. Then look in the neighborhood of this black pixel to find other black pixels that belong
to the same region. Repeat this process until a complete region has been extracted. This can
be coded using recursion, or keep a list of (row, col) values for pixels that still need to be
visited to complete the current region. Recursive code for region finding is easy to write, but
large regions can cause stack overflow. The regions in the sample digit images are rather
small, so should not cause stack overflow.
 Your program needs to keep track of which pixels belong to each region. One method is
to create an output image where pixel value 0 is used for the background (not part of any
region) and pixel value i>0 denotes that this pixel belongs to region i. As you process a black
pixel in the input image, write value i into the output image and erase this pixel from the
input image to prevent subsequent re-processing of the same pixel.

4. Write code to measure the following features for each connected black region.
• Blackness ratio. This is “area of the region (number of black pixels)” divided by “area of

the bounding box”.
The bounding box of a region is the smallest axis-parallel rectangle that encloses all the
pixels belonging to the region. Let minX, maxX, minY and maxY be the extreme x and y
values for the pixels belonging to the region. The left edge of the bounding box is at
x=minX, the top edge is at y=maxY, etc. If you like, you can draw the bounding box in
your output image; this can help with debugging.

• Aspect ratio of the bounding box. This is (maxX - minX + 1) / (maxY - minY + 1)
• Number of holes in the connected black region. You can reuse the region growing code

you wrote for step 3, but switch the role of white and black pixels.
 Notice that the definition of black and white regions must be asymmetric. If you define
the connectivity of black regions using an 8 neighborhood, then define the connectivity of
white regions (holes) using a 4 neighborhood. Using an 8 neighborhood means that
diagonally-touching black pixels (such as pixels A[3,4] and A[4,5]) are considered to be
part of the same region. Using a 4 neighborhood, diagonally-touching pixels are not
considered part of the same region (unless they are connected some other way, e.g. by
A[4,4] or A[3,5] also being part of the region).

• Two or more additional features of your own devising.

4.4 What to hand in for Digit Classifier Part 1

For part 1, hand in
• Sample output showing that you are able to measure features of digit images. (Not long,

please. Just enough to demonstrate that it is working.)
• A brief description of the features of your own devising.

5 Digit Recognizer Part 2: Classification

Create a digit classifier and measure its performance. You can use some of the features measured
in Part 1, and you are welcome to add new features. You might find that some of the features from
part 1 are rather weak and you would get better classification performance by omitting them. For
example, many students find that the bounding-box aspect ratio does not provide a lot of
discrimination information.

You are free to choose the classification algorithm. For example, you might use one of the
following:

• A decision tree. You can construct a decision tree manually or use software that
automatically constructs a decision tree (in an environment such as Weka or R). If you go
the latter route, try to find some way of judging whether the software is doing a good job in
constructing the decision tree.

• A nearest-neighbor classifier, or a k-nearest neighbor classifier.
• Plot points in feature space and manually place decision boundaries.
• Template matching (see Course Reader section 1.3; also section 1.4.2 on resizing an image).
• Multiple classifier combination. Using an environment such as Weka or R, apply several

types of classifiers and use voting to determine the overall classification result. Does the
voting improve performance: is P(error) lower for the voting result than for the individual
classifiers?

• You should not make neural network classifiers the main focus of your project. This is
because neural networks are treated in detail in another graduate course, CISC874. However,
if you are using several different types of classifiers in your project work, then you are

welcome to include neural network classifiers. For example, you could implement several
classifiers (including a neural network one) and compare performance. Or you could use
multiple classifier combination, as mentioned above.

5.1 Measuring Performance of the Digit Recognizer

Some students test on only 20 digits, others test on over 1000. Recognition rates vary from around
50% up to 98% correct. I don’t mark your project based on classification performance, as long as
your classifier outperforms random guessing (i.e. is correct more than 10% of the time).

Typically, students report recognition results in the following form:
 My classifier was correct on L out of M test digits (that is, N%)
I don’t expect you to use thousands of test images, but be sure to discuss the statistical significance
of your test results. Refer to the confidence intervals in Figure 9.10 of DHS to translate your L and
M values into a range of N values that is very likely (with 95% confidence) to contain the true
correctness rate.

For large test sets it can be time-consuming to establish the ground truth (the correct answer)
and to check the correctness of the classifier’s response. One way around this is to use ten separate
test files, where each file contains many instances of the same digit (e.g. files “ones”, “twos” in
the 859.digits directory available from the course website). If you have used those files for
training, then you need to find other files for testing.

Sometimes students report recognition results for training data. It’s ok to do this as long as
you clearly label those results as “testing on the training data”, and you have additional test data
as well. If during your classifier design process you trained and tested, then retrained and retested
using the same files, then your report should clearly state that your performance estimate may be
optimistic due to "training on the test data".

If you are testing on a variety of fonts, or on handwritten digits, include a figure to show a
small representative set of data. If you are dealing with very large font variations then it can be
helpful to subdivide some of the classes. For example, character recognizers sometimes divide g
into two classes: one class for the letter with two holes g g and another class for the letter with one
hole g g (one hole). Analogously, a digit recognizer could use separate classes for fours with no
holes 4 versus fours with one hole 4.

If you test on a variety of data, you might be able to make conclusions such as the following:
recognition is best in the single-font case, degrades as more fonts are added, handles bold-face
better than italic, and so on. That sort of observation and analysis is quite interesting even if you
do not have time to test on sufficient amounts of data to give high-confidence estimates of the
recognition rates.

If you like, your test data can include a few non-digit characters (such as alphabetic
characters). How do these characters get classified? Can your classifier reject such input or report
low confidence in classification?

5.2 What to Hand in for Part 2

Required report format: 2-4 pages of text (not counting figures and references) that succinctly
presents the main points. Use 12 point font and at least 15 point line spacing. If you wish, you

can optionally include appendices to provide more detailed information. In my marking I will
concentrate on your 2-4 pages of text, and will only read the appendices if your writing makes me
eager to do so. I impose this strict page limit to give you practice in the vital skill of writing concise
documents that convey the main ideas in an informative, convincing and engaging way.

Organize your project report so that the reader is instantly impressed by the quality of your
work. This is an essential presentation skill, not just for writing course project reports, but also for
writing theses, conference papers, journal papers, and grant proposals. Refer to my advice about
technical writing on the course website.

The first paragraph of this document indicates topics you should include in your project report.
Many students find that they don’t have enough implementation time to get great classifier
performance. Once you have a classifier that works somewhat reasonably well, then put your
efforts into analyzing the strengths and weaknesses of this classifier, and describe that in your
project report. Perhaps you can evaluate the effectiveness of your features. Maybe you can discuss
strengths and weaknesses of your overall design. Maybe you can test how good the classifier is at
handling a variety of fonts and font sizes, or bold and italic digits, or handwritten digits.

