Chapter 4

Graph Transformation Applied to Document Image
Analysis

Graph transformation has been applied to a variety of problems in document image analysis, including recognition of
circuit diagrams, music notation, mathematical notation, and dimension sets in engineering drawings. This chapter
provides an overview of these applications, and describes a PROGRES program for recognition of mathematical
notation?.

4.1 Overview of Document Image Analysis

The information from paper documents needs to be available in electronic form, to permit editing, database creation,
and other applications. Figure 4.1 illustrates operations on a document image and its information content. Text
regions in a document image can be recognized by Optical Character Recognition (OCR). Specialized recognizers are
needed for figures and mathematical expressions. The construction of mathematics recognizers has been investigated
for several decades [BIGr97], but such recognizers are not yet available on the market.

2This chapter includes excerpts from references [GrB195], [BISc98] and [Blos98].

63

64 DOCUMENT IMAGE ANALYSIS

Generate
Information Notational Document Fax
Content Conventions Image >
¥, o
S Q X =
wn . > Q 172}
- .~ . [3) N "'U_'
g o Recognize 3 / & 5
o 2T =
“ .
Paper
. A Document Computer
Database @~ N/ - Screen
<
Figure 4.1 A paper document containing mathematical notation is scanned to form a document image. The

document image supports operations such as faxing and monitor display. When the document image is
processed by a recognizer, mathematical expressions are put into a format such as LaTeX or
Mathematica. This allows further operations such as symbolic algebra manipulations, speech synthesis
(in a reading machine for visually impaired users), or editing and generation of a new document image.

Pattern-recognition problems such as this are typically solved using three steps [Fu82]:
* Define a set of primitives for the domain, as well as a set of relations among the primitives.
* Implement algorithms to find the primitives and relations in a given input.
* Interpret this set of primitives and relations relative to some model of the domain.

The domain model can be organized in many ways, including graph productions, a string grammar, a semantic
net, a blackboard system, or procedurally coded rules. Syntactic and structural approaches are reviewed in [Sanf92],
including string grammars, tree grammars, transition network grammars, prototype pattern representation, and
accompanying methods of analysis (matching, parsing, heuristic search, decision trees, constraint propagation). Few
criteria are available for choosing the best approach to modeling a particular domain [Blos96]. The graph
transformation approach is attractive because graphs are a general and flexible mechanism for expressing spatial and
logical relations among arbitrary sets of pattern primitives.

4.2 Systems Using Graph Rewriting for Document Image Analysis

The following is a chronological discussion of systems that apply graph transformation to document image analysis.
These are research systems, most of which work with a restricted subset of the notation in question. Constructing a
commercial system is very difficult because of the image noise and variability that must be accommodated.

DOCUMENT IMAGE ANALYSIS 65

4.2.1 Parsing Images of Neural Networks [Pfal72]

This paper introduces the idea of using graph grammars to describe pictures. Input images contain blobs (neurons)
with attached tree-like structures (dendrites). A graph grammar is used to parse the input, determining how to
separate overlapping dendrites. The first stage of parsing groups endpoints into incomplete lower dendrites, then into
y junctions, and finally into N-junctions (junctions between a dendrite and the cell body). The second stage of
parsing interprets X junctions as being either crossing axons or touching axons. The system was tested on synthetic
images.

4.2.2 Analysis of Circuit Diagrams and Flowcharts [Bun82]

This paper makes a strong case for the use of graph productions to transform an input graph into an output graph.
Whereas parsing algorithms for graph grammars can be very costly, the application of ordered graph productions is
much more efficient and involves no backtracking. The control specification uses sequential, conditional, and
looping constructs to describe the order of production application. Compound symbols in circuit diagrams and
flowcharts are recognized using this approach.

A circuit diagram image is preprocessed to extract the set of lines (and circles) that occur in the image. This
preprocessing is simulated in the experiments. The set of lines is converted to an initial graph, with one node per
line endpoint or line intersection. These nodes are connected by graph edges wherever corresponding edge segments
were extracted from the image. Node attributes record the (x, y) image location being represented. The image
locations allow graph productions to test constraints such as near-parallelism of two edges. The output graph
contains nodes representing compound drawing entities (capacitors, transistors, resistors).

The ordering of productions is useful in defining the recognition algorithm. First, error-correcting productions
remove certain irregularities from the input graph. This includes closing gaps in lines and shortening lines that
extend past their ideal endpoints (as when a person draws a T intersection with the vertical line extending too far
upwards). Once these error-corrections have been exhaustively applied, the recognition of compound symbols
begins. Here again, ordering is important. The rectangles that represent resistors are recognized first. Once these
have been recognized, remaining right-angle bends are certain to be bends in signal lines. About 60 productions are
used to process circuit diagrams, and 30 productions to process flowcharts.

4.2.3 Analysis of Dimension Sets in Engineering Drawings [DoPn88]

In this work, a web grammar is used to describe the syntax of dimension sets in engineering drawings. An
engineering drawing describes the structure of a physical object, often using several orthogonal views. Dimension
sets state the distance or angle between two places on the object, and can be drawn in many ways:

_ 3x45°

o= . % 2
—\ (T a0

The graphic components of a dimension set include text, shape, tail, contour, arrowhead, and witness line.
These components form the primitives of the web grammar. The grammar is small and non-recursive. About 10
web productions are used to generate (or parse) virtually all of the dimension-sets which can occur in machine
drawings. The grammar is being adapted for use in the Machine Drawing Understanding System (MDUS).
Engineering drawings are difficult to process, due to their large size and high noise levels (smudges, stains from
coffee cups, breaks in lines, text in small fonts). MDUS algorithms for primitive recognition are discussed in
[DLDC93].

T

66 DOCUMENT IMAGE ANALYSIS

4.2.4 Analysis of Music Notation [FaBl193]

This work extends the approach proposed by Bunke [Bun82] to recognition of music notation. The following issues
had to be addressed. Firstly, music notation is not graph-based, unlike the circuit-diagram and flowchart notations
processed by Bunke. Therefore it is much less clear how to construct the initial graph from the set of image
primitives. Secondly, music notation contains physically distant symbols which have semantically important
relationships. For example, the pitch of a note can be affected by accidentals (sharp # or flat b) placed just before a
note, placed earlier in the measure, or placed in the key signature at the start of the staff. In contrast, analysis of
circuit diagrams and flowcharts involves only recognition of local line configurations.

Recognition phases named Build, Weed, and Incorporate are used in solving this problem. The system begins
with a set of music symbols and their image coordinates. It is assumed that there are no errors in symbol
recognition. Each symbol gives rise to one attributed node in the initial graph. There are no edges in the initial
graph, since there is no way to predict which symbol pairs have important spatial relationships. Build productions
inspect pairs of nodes and add edges for potentially interesting associations. Weed productions remove uninteresting
or conflicting associations. The remaining associations are interpreted by Incorporate productions, which use the
attributes of long-lived nodes to record the image interpretation. For example, Build productions create edges from a
note node to several preceding accidentals (possibly including one just before the note, several earlier in the
measure, several belonging to key signatures earlier on the staff). A Weed production removes the edges to all but
the closest preceding accidental. An Incorporate production updates the pitch attributes of the note node, and
deletes the edge to the accidental node. After the accidental node is completely disconnected, it is removed
as well.

The Build, Weed, Incorporate sequence is used within each of the following processing stages: connect
noteheads and accidentals to the bar line ending their measure, find the clef governing each notehead and accidental,
associate noteheads and stems, associate accidentals and noteheads, use duration dots to update note and rest durations,
form notes into chords, use flags and beams to update the duration of chords. Approximately 50 productions are used
in the prototype system, which processes only a small subset of music-notation constructs.

4.2.5 Analysis of Music Notation Using Simplified Graph Productions [Pies94]
[Baum95]

This work defines a simplified type of graph production, to allow efficient implementation. Graph productions are
restricted to having at most three nodes on either LHS (left hand side) or RHS (right hand side). Edges are treated as
node attributes, not as separate objects. The applicability predicates are restricted in form. Seven types of
productions are defined, to increase the variety of operations that can be expressed using this restricted form of graph
production. The production types, which are closely tailored to the application, are CD_START (start a control
diagram), LOCALIZE (apply the production to a subpart of the graph, defined relative to a tree structure imposed on
the graph), DELOCALIZE (undo the effect of a previous LOCALIZE), REPLACE (replace the instance of LHS by
the first node in RHS), GENERATE (keep the LHS instance and create the first node in RHS subject to various
syntax conditions), ASSIGN (do not create new nodes, but possibly delete nodes), and REASSIGN (adjust the tree
structure that is imposed on the graph).

A complete system was implemented for a subset of music notation, and tested on three pages of music
(Dickie’s Rag by Heger and 2 pages of Bach’s Wohltemperiertes Klavier). An image is first processed to remove
staff lines. Next each connected component (a connected black region left in the image after staff-line removal) is
processed by a nearest-neighbor classifier, producing up to three hypotheses for which symbol is represented. This
provides the input to the graph transformation. Approximately 110 productions (not the complete set) are shown in
[Pies94].

DOCUMENT IMAGE ANALYSIS 67

4.2.6 Analysis of Mathematical Notation [GrB195]

This work uses graph productions to interpret mathematical expressions which have irregular layout (Figure 4.2).
Details of the graph transformation approach are described in Section 4.3. Briefly, input to the graph transformation
system is a correct set of mathematical symbols, annotated with (x, y) image locations. Initial graph construction is
similar to [FaB193]: a discrete graph with one node per symbol. In the first implementation [GrB195], recognition is
divided into phases Build, Constrain, Rank, and Incorporate. During a subsequent translation to PROGRES,
undertaken by A. Schurr, the software was reorganized into Build, Constrain, and Parse phases. A copy of the code
is available at [URL98]. Build productions create edges between any nodes that may share a significant spatial
relationship. Constrain productions examine a larger context in the graph, to remove unneeded spatial relationships.
This is the trickiest part of the computation. Proper identification of the important spatial relationships permits the
subsequent Parse phase to operate without backtracking. Parse productions must ensure that operators are not

a
applied prematurely. For example, in a hand-written expression with layout —— +e the + operation should

not be evaluated first, even though a + ¢ are in approximate horizontal alignment. Were the division bar to extend
past the C, then the + should be evaluated first. Parse productions use alignment tests to check for these conditions.
Approximately 60 productions are used in [GrB195] and 45 productions in the PROGRES prototype. These
prototypes process only a small subset of mathematical notation.

4.2.7 Analysis of Mathematical Notation [LaPo97]

This work uses a context sensitive graph grammar to implement mathematics recognition. The parser operates
bottom-up, without backtracking. The absence of backtracking is achieved by carefully adding context conditions to
the graph productions, to cover every case where two different productions might apply to the same node. It is
assumed that accurate point-size information is available, thus permitting accurate, local identification of subscripts
and superscripts. This allows simpler parsing strategies than were used in [GrB195]. For example, point size
information disambiguates the configuration Xj which might occur in the context x;y; or a*i. The size of this
system (number of productions) is not available; the implementation of the graph builder and graph grammar required
approximately 7000 lines of KLONE code.

4.2.8 Analysis of Music Notation with Symbol Uncertainty [FaBl198]

This work addresses the problem of interpreting music notation when the symbol recognizer produces a list of
possible interpretations for each symbol. Graph transformation is used to formulate a generalized version of discrete
relaxation, in which the constraints are not known a priori. This permits additional constraints to be formulated as
recognition proceeds. Graph productions interleave the application of constraints with the interpretation of groups of
music symbols. Approximately 180 graph productions are used, organized into Build, Constrain, Split, and
Incorporate phases.

68 DOCUMENT IMAGE ANALYSIS

4.3 PROGRES Program for Interpreting Images of Mathematical
Notation

This section describes a PROGRES program which addresses some of the problems involved in the interpretation of
mathematical notation. Many approaches have been taken in the construction of recognizers for mathematical
notation. Years ago Anderson proposed an elegant coordinate grammar approach to the problem [Ande77]. This
inspiring work assumes restrictive rules for symbol positioning, for example, that the limits of a summation lie
within the x-extent of the ‘>’ symbol. Other approaches include projection profile cutting, stochastic context free
grammars, procedurally-coded rules, and statistical labeling for subscript and superscript identification [BIGr97].

It may not be apparent that mathematics recognition is a difficult problem. Certainly, linear mathematical
expressions, as found in programming languages, are easily processed using well-understood string grammars and
parsers. Images of two-dimensional mathematical expressions are much more difficult to process. First, the
mathematical symbols are difficult to segment and recognize; the large character set and large range of point sizes
places this beyond the capability of standard OCR systems. Second, parsing or other processing methods must be
able to handle incorrectly recognized or missing symbols. Third, even if the mathematical symbols are perfectly
recognized, they are difficult to interpret due to the subtle use of space in mathematical notation. All three of these
are major difficulties; we focus only on the third point. We assume as input a correct set of mathematical symbols,
annotated with (x, y) image locations. The following characteristics of mathematical notation make these symbols
difficult to interpret.

The layout of symbols is not fully standardized, and is particularly irregular for handwritten expressions
(Figure 4.2). This makes it difficult to identify the logical meaning of spatial relationships. In the following
sequence, it is not clear whether the middle elements represent multiplication or exponentiation: 2x 2Xx 2X
2X 2% 2% 2% A related problem is that the baseline cannot be found without global examination of the
expression. For example, the meaning of Xj is not clear locally; it is different in x;y; compared to a*i. Point-size
information can help, but point sizes are difficult to recognize, and are highly variable in handwritten expressions.

A+B

i.
g B
/Y’i’ b BC

D

E

Figure 4.2 Two handwritten mathematical expressions illustrating the irregular layout that may be used.

Mathematical symbols can take on various roles. A dot can be a decimal point, a multiplication symbol, an
annotation such as x, or noise. A horizontal line can be a division symbol, part of a compound symbol such as ‘=",
a negation symbol, or a subtraction symbol. The role of a line is particularly difficult to determine for handwritten
expressions, since writers use variable line length and placement.

4.3.1 Build, Constrain, Parse

The graph transformations which process a mathematical expression are organized into phases. In the original
version, Build, Constrain, Rank, and Incorporate phases were used [GrB195]. During a subsequent translation to
PROGRES, the software was reorganized into Build, Constrain, and Parse phases, which are described below. The

DOCUMENT IMAGE ANALYSIS 69

complete PROGRES source code is available [URL98]. This source code can be executed by the PROGRES
interpreter, or it can be automatically translated to C. A graphical user interface allows the intermediate stages of the
graph transformation process to be inspected. The input to the program is a list of mathematical symbols and their
(x,y) locations. The output of the program is a string describing the expression, in a format similar to that used in
programming languages.

The processing steps are illustrated in Figure 4.3. First, a handprinted or typeset mathematical expression is
scanned to turn it into an image. The image is processed by a symbol recognizer. In our system, symbol
recognition is performed by hand, and is assumed to be done correctly. The resulting symbols are converted into an
initial graph which contains one node per symbol, and no edges. Each node has attributes which store the identity of
the character as well as the image location of the character. For example, a “y” in the image gives rise to a node
with label DescendingLetter ~ ,ameaning attribute “y”, and attributes Xmin , xmax, ymin , ymax providing
the coordinates of the bounding box. The productions in the Build phase create edges between any nodes that may
share a significant spatial relationship. The Constrain phase examines a larger context in this graph, to remove
unneeded spatial relationships. This is the trickiest part of the computation. Proper identification of the important
spatial relationships greatly simplifies the job of the subsequent Parse phase.

70 DOCUMENT IMAGE ANALYSIS

seePaste Math Recognition Figure Hereeee

Figure 4.3 A document is scanned to produce image a). Parts b) to f) show snapshots of the processing of this
data, as seen in a window of the PROGRES interpreter. Nodes in the initial graph b) have attributes
Xmin , xmax ,ymin ,ymax which are not shown. The Build phase adds edges for all spatial
relationships that might be useful, producing a complete graph for this small example. The constrain
phase examines the graph context, to remove unneeded edges such as ¢ sub d . The Parse phase
collapses subgraphs that represent high-precedence operations. The final graph f) contains a single
node whose meaning attribute is a string describing the original expression.

71

DOCUMENT IMAGE ANALYSIS

The central data structure in this computation is the graph that represents the mathematical expression. Its
type declaration, called a graph schema, is shown in Figure 4.4. The graph schema defines all possible node labels,
and their associated attributes. The node labels are organized into a class hierarchy, with multiple inheritance. This
allows graph productions to match nodes with greater or lesser selectivity. For example, suppose the expression

graph contains a node that represents a plus symbol. A production rule can match this plus node using an LHS node
labeled Plus , PLUSMINUS, TERMINAL_OPERATORSYMBOL TERMINAL, OPERATORor OBJECT. The
. label is most specific,

OBJECT]abel is most general, matching any node in the expression graph. The Plus
matching only nodes that represent plus symbols
Any node belonging to class TERMINAL

Node classes are defined for both terminals and nonterminals
represents a mathematical symbol and has position attributes Xmin , xmax, ymin , ymax. These nodes are created

as part of the initial graph. Nodes belonging to class NONTERMINAL are created during the recognition process, to

represent the interpretation of the mathematical expression. They do not have position attributes

p”
(Ascen ingLetter))(Plus) (Minus)

(DescendingLetter) : (Lowercaseletter
AV A <
(Factor)("Term) (' Base) LETTER PLUSMINUS MULTDIV
«yr » \ 4 4)
NONTERMINAL_OPERAN TERMINAL_OPERAN (Dot) TERMINAL_OPEARTO
1: \\\ ,'I ~\~~‘ v ,—""" “\
/ Arsvveor 14
v 4 win — Y x A
NONTERMINAI OPERANI int eger TERMINAL OPERATO
\\.\ S (D}/ xc entre /,—"’
Tl .. int eger e
el R in te ger LT
LA »
OBJECT |4~

strin gOm

Figure 4.4 An excerpt of the graph schema for the expression graph. The graph schema can be viewed and
edited graphically or textually. The class hierarchy has node class OBJECTat the root, and node
types at the leaves. Attribute definitions are shown for node classes OBJECTand TERMINAL.
An OBJECThas an attribute meaning of type string This attribute is inherited by all node
classes and node types. A TERMINALhas two integer attributes, xmin and xmax, and a derived
attribute xcentre which is defined as avg(self .xmin, self .xmax) . The attributes
ymin ,ymax, and ycentre are defined analogously
This is illustrated in Figure

Three global parameters are used in defining criteria for spatial relationships
4.5(b). The maximum horizontal separation between two horizontally-adjacent symbols, called hmax, is used in

72 DOCUMENT IMAGE ANALYSIS

function precedes . The maximum vertical separation between two vertically-adjacent symbols, called vmax, is
used in function super . The maximum vertical deviation between two horizontally-adjacent syntactic units, called
htol ,is used in function left . If these parameters are set to small values, then mathematical expressions are not
interpretable unless the symbols are close to the ideal alignment. This might be appropriate for typeset expressions,
but would lead to rejection of many handwritten expressions. If these parameters are set to large values, then
expressions with quite irregular layout can be interpreted. Large parameter values increase the execution time: the
Build phase adds many more edges to the expression graph, because it accepts more distant symbols as potentially
being in horizontal, vertical, subscript or superscript relations. These extra edges, in turn, create more work for the
Constrain phase. The Parse phase is unaffected.

Build productions have a simple structure, shown in Figure 4.5(a). The LHS tests whether two TERMINAL
node meet the criteria for a particular spatial relationship. If so, then this relationship is inserted into the graph.

Several different types of Constrain productions are used. The first type, shown in Figure 4.6(a), removes a
particular kind of unneeded spatial relationship. The second type, shown in Figure 4.6(b), recognizes the syntactic
role of a symbol. The first type of production is applied exhaustively before moving on to the latter type of
production. This allows the syntactic-role identification to proceed with the knowledge that unneeded spatial
relationships have already been removed.

Parse productions find and interpret syntactically-meaningful configurations of symbols. No backtracking is
necessary — the Parse productions are written so that any execution path leads to the correct answer. In case of a
syntactically incorrect expression, all execution paths lead to a failed parse, but the nature of the failure can vary
depending on which path is taken. Multiple execution paths arise in two ways: (1) the control structure specifies
that several graph productions are to be applied nondeterministically, and (2) a graph production is applicable to
several locations in the host graph.

Parse productions avoid premature processing of operators. For example, in a hand-written expression with

a +c¢
symbol placement T , the + operation should not be processed first, even though a + C are in approximate

horizontal alignment. Were the division bar to extend past the C, then the + should be processed first. Parse rules
use alignment tests to check for these conditions, as in Figure 4.6.

DOCUMENT IMAGE ANALYSIS

73

(* Build a Super association between any two symbols in a base-superscript configuration. *)

production Build6 =

! 1 ! 1
! R 1 ! i PN 1
E 2 : TERMINAL : E Wﬂy 2 =2 :
! Has !
E Po= E s 4 3" : Super :
' ["1: TERMINAL | vl = |
! : - :
e rcc e e c e e e r e e e e e e e e e e e e e e ... -—-——-- UG U
condition _ super (1, 2);
end; @
function _ between: (a, b, c: integer)-> boolean = (a<bh) and (b<c) end;
function _ hBounded : (a, b : TERMINAL) -> boolean = between (b.xmin, a.xcentre, b.xmax) end;
function _ precedes : (a, b : TERMINAL) -> boolean =
between (0, b.xcentre - a.xmax, hmax) and (a.xmin < b.xmin) end;
function _left: (a, b: TERMINAL) -> boolean =
precedes (a, b) and (abslint (a.ycentre - b.ycentre) < htol) end;
function _ super: (a, b: TERMINAL) -> boolean =
(not hBounded (a, b)) and precedes (a, b)
and between (htol, a.ycentre - b.ycentre, vmax) end;
(b)
(LeftOf) (Sub) (Super) (AboveOf)
: \\\ ’l' :
poTTTTTTTTm T m e k HORIZONTAL DIAGONAL VERTICAL
! 1 \\ 4 \\ s
l 2=72 !
: : A & A A
N Super : XREL YREL
‘ ‘ Has
RELSHIP OBJECT
With
(©) @

Figure 4.5 The Build production (a) tests whether two TERMINALnodes have a spatial relationship satisfying the
super condition. This condition is defined using the functions in (b). If the condition is met, we
would like to insert a Super edge between the two TERMINAL nodes (c). Instead, the RHS of
production (a) inserts a Super node. This is done because PROGRES allows class hierarchies to be
defined for node labels, but not for edge labels.

The class hierarchy for relationships is defined in (d), and is part of the graph schema illustrated in
Figure 4.4. Lines with open arrow heads declare edge labels. For example, a has edge originates at
an OBJECTnode and terminates at a RELSHIP node. The relationship hierarchy is extensively used
by Constrain and Parse rules, to match spatial relationships with a variable degree of specificity.

74

DOCUMENT IMAGE ANALYSIS

(* Remove horizontal or superscript relationships that cross a horizontal line. *)
(* Class XREL is defined in Figure 4.5(d). *)

production _ ConstrainAl =

"""""""""""""""""""" 1 e |
! 1 ! 1
1 1
' | 1: TERMINAL : : 1="1 :
1 ! 1 !
| Has ! | ‘Has !
: With 1 : 1
1|5 : AboveOf E ' 5="5 E
1 1
1 With ! 1 With !
: v o ' E
' |'3:HLine 4 : XREL ¢ou= 3=13 '
1 ! 1 !
1 Has ! 1 Has !
: v H i
1|6 : AboveOf as : ' 6 ="6 :
1 1
With ! With !
l v P yen
1 1
! *2 : HLine : ! 2°="2 :
1 1
e e e e e e
ena,
@
(* Convert a Dot to a Decimal if the appropriate conditions are met. *)

(* Other productions convert a Dot to Multiply, and remove Dots that are noise. *)

production __ ConstrainC1 =

e 1 r
T mEmEmEmEmEmEmEm=- l Wth 1 1
! :lefiof '———p|2: Digit v
b e e e e = ==
; W L
1 1 1
:.' --------- "3 : Super , ,
::-6 : LeftOf '%th‘ Aas : :
: _ ‘1:Dot |H2S 5 | eftof Ch e
v __. With e e ___1 T
| P Lo
Y7 YREL 1 Has ' '
ettt aa. [ITTTTTTTT 1 | |
! 1 "9:Sub : 1 '
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

Figure 4.6 Two Constrain productions. Rule (a) removes LeftOf, Sub and Super relationships that cross a

horizontal line. In (b), nodes with single dashed borders, such as “4, match zero or one nodes in the
expression graph. Nodes with double dashed borders, such as *7, match any number of nodes. Node *2
matches the first digit that follows the decimal point. Node "4 transfers an incoming LeftOf relationship
(if any) from this digit to the decimal point. Nodes 7 and 8 preserve spatial relationships. Nodes 5, 6,
and 9 match spatial relationships that are deleted.

DOCUMENT IMAGE ANALYSIS 75

(* Reduce the leftmost Factor in a Term *)

production __ ReduceFactor =

transfer
end;

=
m
o)
Q
=
o
=
=
(9]
(=}
m
o)
Q
—
o
=
1
-
—
]
=
3

lHas Has
et Sk S S S iy
1"3:RELSHIP 1 Py ¥
............ e c e e e ---
....................... . U U

1".meaning := "1.meaning;

Figure 4.6 A Parse production. The restriction redFactor tests that the Factor mnode "1 is the leftmost

factor and hence should be reduced to a Term. If node “1 does not have an incoming LeftOf edge,
redFactor returns True , allowing the reduction to go ahead. If there is an incoming LeftOf
edge, redFactor follows this to reach a node N. Node N may be a multiplication or division
involving node " 1; in this case redFactor fails and node *1 is not reduced from Factor to Term.
A subtle test is needed to determine whether node N involves node "1 in a multiplication or division.
This test checks that N and "1 are aligned, in the sense that they have the same division bars above and
below them, and that N is a MULTDIVor Operand node. A MULTDIV node means that the math
expression contains an explicit * or / operator, whereas an Operand node arises when implied
multiplication is used.

As mentioned, imperative control constructs are used to order the application of productions. Syntactically-

incorrect expressions cause the graph transformation to stop early, failing to reduce the expression graph to a single
node. The following extract illustrates the control constructs.

76 DOCUMENT IMAGE ANALYSIS

transaction Processinput =
(* Apply four transactions in succession *)
ReadScannerOutput & BuildPhase & ConstrainPhase & Parse
end;

transaction Parse =
ReduceSymbols
& loop (* Repeat the three transactions until no more productions apply *)
ReduceFactors & ReduceExpressions & ReduceFractionLines
end
end;

transaction ReduceExpressions =
ReduceFactor (* This production is shown in Figure 4.6 *)

& loop ReduceMult end
& loop ReduceMultDiv end

& ReduceTerm

& ReduceMinus

& loop ReducePlusMinus end
end;

Graph transformation has been a useful tool in our study of mathematical notation and music notation. In
recognition of music notation, graph productions are similarly organized into phases named Build, Weed, and
Incorporate [FaB193]. Execution efficiency can be increased by restricting the types of graph productions that are
used [Baum95]. A challenging problem is posed by image noise. This causes the symbol recognizer to
misrecognize symbols, or to segment them incorrectly (splitting one symbol into two or merging two symbols into
one). The graph transformation described above makes no allowance for noise or uncertainty. In extending this
work [FaB198], the symbol recognizer is allowed to produce several possible interpretations for each symbol. For
example, a symbol might be reported as a filled notehead e , unfilled notehead o, or noise The initial graph has an
exclusion edge between every pair of competing interpretations. A Build phase adds edges for potentially
important spatial relationships. Then Constrain , Split , and Incorporate phases are applied in a loop.
Split productions enumerate competing interpretations, which arise from the competing symbol identities
presented at the start. The competing interpretations are culled by Constrain productions. Further work remains
to be done, both to address symbol segmentation problems, and to allow application of soft constraints. Soft
constraints are constraints that are usually observed in music and mathematical notation; they relate to making the
notation readable and aesthetically pleasing. For example, in music notation it is usual to leave more space after
longer notes. This provides evidence for resolving a symbol-recognition ambiguity between @ and o.

Many approaches have been taken in the construction of recognizers for mathematical notation. Our work
with graph transformation focuses on accepting expressions with irregular layout. Years ago Anderson proposed an
elegant coordinate grammar approach to the problem [Ande77]. This inspiring work assumes a strict symbol
layout; for example, the limits of a summation must lie within the x-extent of the ‘X’ symbol. Other approaches
include projection profile cutting, stochastic context free grammars, procedurally-coded rules, and statistical labeling
for subscript and superscript identification [BIGr97].

We find that diagram recognition problems are very naturally formulated using a graph data structure which
must be transformed into a desired output. Graph transformation is a convenient tool for exploring these problems.

