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The user interface is critical to the success of a diagram recognition
system.  It is difficult to define precise goals for a user interface, and even
more difficult to quantify performance of a user interface.  In this paper,
we discuss some of the many research questions related to user interfaces
in diagram recognition systems.  We relate experiences we have gathered
during the construction of two on-line diagram recognition systems, one
for UML (Unified Modeling Language) notation and the other for
mathematical notation.  The goal of this paper is to encourage
discussion.  The graphics recognition community needs strategies and
criteria for designing, implementing, and evaluating user interfaces.
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1. Introduction
User interfaces are challenging to design and construct.  The success of the user

interface has an enormous influence on the success of recognition software.  In this
paper we discuss issues that arise in the construction of user interfaces.  We draw on
our experience in implementing two on-line diagram recognition systems, one for
UML 1 notation [17] and the other for mathematics notation [29] [30].  Both of these
build on the character recognizer and user interface of Smithies, Novins and Arvo [26].

1.1 Existing Research into User Interfaces
Human Computer Interaction (HCI) has been studied extensively [8].  This

literature provides insights relevant to the construction of user interfaces for diagram
recognition systems.  Selected papers are discussed in the following sections.

Software tools that support user-interface construction are reviewed by Myers [21].
Application of these tools to diagram recognition systems should be investigated.
However, generic tools may be difficult to apply: diagram recognition requires close
interaction between the user interface and the recognition algorithms.  The user interface
should provide the user with the highest-quality recognition results for a given amount
of user input time.  The user’s input time can be spent before recognition (e.g.,
training a recognizer), during recognition (e.g., inspecting and correcting intermediate
results), or after recognition (proofreading and correcting recognition errors).

HCI researchers have found that system design requires a deep understanding of the
user's tasks [11] and the user's physical context [12].  Scenarios of use [7] can be
developed to show the broader context of diagram use.  For example, a diagram may be
drawn as part of a brainstorming session.  This requires a fluid drawing environment, in
which users are not inhibited by requirements of syntactic correctness or complex
editing techniques [27].   In contrast, the creation of a precise diagram (e.g., an

1UML, the Unified Modeling Language, is a diagram notation for describing the structure of
software systems.   Early in the software design cycle, software engineers informally sketch
UML diagrams on paper or whiteboards.  UML recognition software can make this diagram
information available to Computer Assisted Software Engineering (CASE) tools.



engineering schematic, or a blueprint for a building) may be best served by tools that
do not use on-line document recognition, but instead provide structured document entry
with checking and analysis facilities.

If an on-line diagram recognition tool is used to support brainstorming, the tool
must support collaborative work. This means that the system must be able to sort out
whether strokes drawn by a pair of users are contributing to a single drawing element or
to separate elements. While a single person can work with a small drawing surface,
such as a piece of paper or a small computer monitor, group work requires a large
physical drawing surface, such as a whiteboard or flip chart.  Various activities
accompany the drawing of a diagram, including gesturing, pointing, annotating and list-
making.  It is challenging for the user interface of an on-line diagram recognition tool
to permit all of these activities; in addition the user must be able to easily specify what
parts of the drawing are candidates for recognition.

1.2 On-line versus off-line recognition
Our focus is on user interfaces for on-line diagram recognition systems.  Here we

briefly contrast on-line and off-line systems.  The user interface is pervasive in an on-
line system, responding to the strokes the user draws. In contrast, an ideal off-line
system has a minimal user interface: a user presents a stack of paper to the scanner, and
the recognition system processes this fully automatically, with no recognition errors.
In reality the recognition results are not perfect, so a user interface is provided to
support proofreading and error correction.

On-line systems process modest amounts of data, whereas off-line systems can be
applied to large-scale data acquisition tasks.  This difference in data volume has a
significant impact on user interface requirements.  In the on-line case, the user draws
diagrams while connected to the computer, and is available for proofreading and
correcting the recognition results.  In the off-line case, the large volume of data may
mean that the user cannot invest the time to proofread and correct the recognition
results.  This problem can be addressed both by developing highly accurate recognition
algorithms, and by finding ways for subsequent software to use noisy recognition
results.  For example, noisy OCR results are used in the text editing system of [2]: the
scanned document image is presented to the user, with the noisy OCR result hidden
from sight but used for content searches.

1.3 The Interaction Between Editing, Generation and Recognition
Diagram recognition has traditionally been well-separated from diagram generation

and editing.  This arises naturally in off-line diagram recognition, where the goal is to
get a one-time transfer of information from paper documents to an electronic form.  As
discussed below, on-line diagram recognition can lead to a closer relationship between
recognition, editing and generation.

Figure 1 illustrates the image and information aspects of a diagram [4].  Diagram
generation is a translation from information to image, whereas diagram recognition is a
translation from image to information.  In traditional off-line diagram recognition
systems, a recognizer is applied once, to transform the image into information.  This is
followed by an edit/generate cycle, in which the user iteratively edits the information
and views a re-generated diagram.  The user edits both to correct recognition errors, and
to change the diagram.  For example, recognized music notation may be transposed;
this creates new sheet music to fit the vocal range of a singer.
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Figure 1 A diagram must be treated as both image and information.  The image is
displayed to the user, and supports image-level operations such as faxing.  The
information supports intelligent editing operations, content-based searches,
and many other operations which require an understanding of the diagram.

Diagram editors provide either a batch or WYSIWYG (What You See Is What You
Get) user interface. In a batch system, such as LaTeX, the user directly edits a textual
representation of the information, and requests image generation when desired.  In a
WYSIWYG system, the user views the diagram image, issues editing commands to
update the information, and views an updated image created by the diagram generator
[3].  The WYSIWYG interface does not require the user to learn a textual encoding of
the diagram information.

On-line diagram recognition offers the possibility of more closely integrating the
recognizer into the edit/generate cycle.  A user begins by drawing a portion of a
diagram, which is recognized and perhaps rectified.  The user continues to edit:
correcting recognition errors, moving and resizing diagram elements, and drawing new
parts of the diagram.  This scenario puts complex requirements on the user interface for
the diagram recognition system.  It must be possible to apply recognition algorithms
to the new parts of the diagram, while preserving the recognition results (and user
corrections) made to the old parts of the diagram.  Ideally, the user should have one
integrated piece of software which provides diagram recognition, diagram editing and
diagram generation capabilities.

1.4 The User Interface Provided by Paper
Paper is popular and widely used.  Before designing a user interface for document

recognition, it is worth reviewing the properties of paper that make it so attractive:
ergonomics, contrast, resolution, weight, viewing angle, durability, cost, life
expectancy, and editorial quality [15].  Paper also has limitations: erasing is difficult, it
is not possible to “make extra room” to expand parts of a diagram, it is hard to find
information in a large stack of paper, and so on.  A goal for future computer interfaces
is to retain the advantages of paper while also providing the editing and search
capabilities lacking in paper.

Gross and Do have observed that designers prefer to use paper and pencil [13].  In
particular, designers reject the use of computers in the early, conceptual, creative phases
of designing.  Paper and pencil permits ambiguity, imprecision, and incremental
formalization of ideas.  With paper and pencil, you draw what you want, where you
want it, and how you want it to look.  In contrast, computer based tools force designers



into premature commitment, demand inappropriate precision, and are often tedious to
use when compared with pencil and paper.

The rest of this document discusses user interface issues related to quantifying the
performance of a user interface (Section 2), supporting diagram input (Section 3),
executing the recognizer (Section 4), displaying recognition results (Section 5), and
supporting user correction of recognition errors (Section 6).  Important research
problems exist in all of these areas.

2. Quantifying the Performance of a User Interface
The performance of a user interfaces is difficult to measure.  One challenge is to

separate the performance of the user interface from the performance of the recognition
algorithms. (Evaluation of graphics recognition algorithms is discussed in [25]).  The
user interface plays a big role in determining how much time the user spends finding
and correcting recognition errors.  It is particularly difficult to develop a quantitative
performance measure for incremental recognition, where the user can intervene at
different steps of the design [16].

2.1 Comparing Automated versus Unautomated Diagram Entry
One approach to performance measurement is to compare automated diagram entry

(using diagram recognition software) to unautomated diagram entry (where the user
redraws the diagram using a structure-based editor, or the user directly types the
information, as in LaTeX).  Analogous measurements have been made for OCR,
comparing the time needed to type and proofread a page of text to the time needed to
proofread and correct OCR results produced for this page of text [9].  The conclusion
was that OCR must be at least 98% correct to match the data entry time and accuracy
(number of residual errors after proofreading) achieved by human typists.
Unfortunately, there are no comparable results for diagram recognition.  We would like
to compare diagram entry (user time taken, residual errors) using two methods:

1. Automated diagram entry:  On-line or off-line diagrams are processed by recognition
software, producing information which is proofread and corrected by the user.

2. Unautomated diagram entry: A user enters diagram information via editing
commands (using a batch or WYSIWYG editor, as discussed in Section 1.3).

The user time taken for method 1. depends both on the recognition algorithm (how
many recognition errors there are for the user to correct) and on the user interface (how
quickly the user can find and correct these errors).  The performance baseline provided
by method 2. is well-defined for text entry, but may change for diagram entry: the speed
of skilled human typists is not likely to increase much in the next decade, whereas the
speed of skilled human entry of diagrams (using method 2.) could increase due to
advances in diagram editors.  Since many users are interested in finding the fastest and
most accurate method of entering diagram data, there is a real need for quantified
comparisons of automated and unautomated diagram entry.

2.2  Other Performance Measures for User Interfaces
The previous section discusses a performance measure based on user entry time.

That is one useful measure of performance, but additional measures are needed to
capture other performance aspects.  Can a user draw a diagram in a comfortable,
freehand, unconstrained way?  This is particularly important when the user does not
start with a paper diagram, but instead is creating a diagram interactively.  Also, how



frustrating does a user find the recognition system?  Currently, diagram editing and
generation software tends to be less frustrating (and more predictable) than diagram
recognition software.  Quantifiable performance metrics are needed for these aspects of a
user interface.

Nielsen has defined usability as consisting of five attributes: learnability,
efficiency, memorability, errors and satisfaction [23].  Measuring these attributes is
difficult.  Nielsen and Levy discuss two categories of measurable usability parameters
[24]: subjective user preference measures, which assess how much the users like the
system, and objective performance measures, which measure the speed and accuracy
with which users perform tasks on the system.  Although users sometimes prefer the
system on which they perform more poorly, in most cases preference and performance
are positively associated [24].  Desirable usability principles listed in [14] include
control, predictability, transparency, trust and privacy.

The usefulness of a design refers to the possibilities for action in the design,
whereas usability refers to the user's ability to notice these possibilities for action [20].
Usability depends on the user’s experience level.  For example, a standard GUI provides
extensive information about the set of actions that are available to the user.  This is of
great help to novice users.  Expert users tend to prefer command-line interfaces: they
have memorized the commands, and find it faster to enter a short keyboard command
than to move the hand to the mouse, position the pointer, and click [20].

3. Supporting Diagram Input
Pens are commonly used as input devices for drawing diagrams.  A pen is natural

and easy to use on small surfaces (data tablets) and large surfaces (electronic
whiteboards).  A two-ended pen supports fast mode switching (Section 6).  Perhaps the
use of a programmable data glove could be investigated: all fingers can be involved,
providing new ways of drawing, selecting objects, and correcting recognition results.

Diagram entry can occur through unconstrained drawing, or via gestures.  Gestures
are stylized pen strokes which invoke a command.  In gesture-based entry, there is no
need for diagram recognition – only gesture recognition is required.  As an example, the
Knight Project supports gesture-based creation of UML diagrams [10].  Unconstrained
diagram entry is more natural (more like drawing on paper) than gesture-based diagram
entry.  However, recognition performance must be high.  Otherwise users are likely to
prefer the more constrained but more reliable entry method based on gestures.

In [16], gestures used for drawing correction include erase (back-and-forth scribble),
move (arrow) and select (enclosing circle).  In trials on nine novice users, only 74% of
269 erasing gestures were effective; surprisingly, this did not discourage the users, who
always chose to gesture when they had a choice between gesture and menu for erasing.
There is need for standardization of gestures for common operations; existing software
uses various gestures for the same operation [18].

4. Executing the Recognizer
Recognition can be eager (occurring while the user draws), or lazy (occurring only

when explicitly requested by the user, or when recognition results are required by
another operation).  Lazy recognition prevents the recognition process from intruding
on the user’s creative phase [22].  In contrast, when eager recognition is combined with
immediate changes to the display, the user may be distracted.  For example, eager



rectification of a user’s strokes can be disorienting, because items that the user just
drew suddenly change appearance.

Eager recognition is used in our mathematics recognition system (Figure 2).
Every time the user draws a new math symbol in the drawing panel, the recognizer
produces an updated LaTeX interpretation.  This relies on the ability of the recognition
algorithms to process incomplete expressions [29].

Figure 2 These screen shots from our mathematics recognition system [29] show three
different methods of providing feedback about recognition results. (1) The lower
panel displays the LaTeX output produced by the recognizer.  Eager recognition
is used, updating this panel every time the user enters or moves a character.
(2) The upper panel shows character-recognition feedback provided by
superimposed drawing annotations.  (3)  The left screen shot shows the original
input, as written by the user.  The right screen shot shows the result after a style-
preserving morph (Section 5.3).  The morph gradually moves and resizes
symbols to display the baselines perceived by the recognizer.

Lazy recognition is used in the Burlap system [19].  The meaning of a sketch is
not recognized until the user actually tries to interact with the sketch.  In other
systems, recognition occurs after a sufficiently long drawing pause.  For example, in
the Electronic Cocktail Napkin, configuration recognizers are run when the user pauses
more than five seconds.  These recognizers search the drawing for instances of their
patterns [13].

Many different types of diagrams are used in society, so it is useful if a diagram
recognition system is able to accept multiple diagram types.  The user can be asked to
identify the diagram type, or the system can infer this information.  Our UML
recognition system currently handles Class, Use Case, and Sequence diagrams, with the
user indicating ahead of time which type of diagram is being drawn [17].  The
Electronic Cocktail Napkin provides definition and inference of diagram types, called
contexts  [13].  The user gives examples to define graphical rewrite rules (patterns and
replacements).  These are used to recognize configurations in a drawing.  In one
example, the pattern is a large rectangle surrounded by smaller squares, and the
replacement is the configuration table surrounded by chairs.  This configuration is



defined in the Room context, and does not apply in another context such as Circuits.
The system identifies the context when the user draws a symbol or configuration unique
to one context.  For example, a resistor symbol is found only in the Circuits context.

5. Displaying Recognition Results
Diagram recognition systems need to display a variety of information.  Our UML

recognition system [17] directly or indirectly displays: the drawing made by the user,
the segmentation of strokes into glyphs, the classification of glyphs into “UML glyph”
versus “alpha-numeric character”, the results of character recognition and UML glyph
recognition, and a rectified version of the drawing.  Recognized glyph relationships are
not explicitly displayed, but are used in glyph moving (e.g., if the user moves a box,
attached arrows move as well).  As another example, our mathematics recognition
system [26] [29] [30] displays: the drawing made by the user, the segmentation of
strokes into glyphs, character recognition results, a partially rectified version of the
drawing, the recognition result as raw LaTeX and as typeset math notation produced
from the LaTeX.  The partial rectification uses a style-preserving morph [30]: characters
and symbols are moved and resized, but retain the shape of their handwritten strokes.
This gives the user feedback on the recognition of superscript, inline and subscript
relations.

As discussed below, mechanisms for displaying recognition results include multi-
view displays, superimposed drawing annotations, rectification, and morphing.  Extra
thought must go into the display of alternative or ambiguous recognition results.

5.1 Multi-view Displays
Multi-view displays [5] [6] show several views of related data, such as the drawn

diagram and the recognition result.  A two-view display can also be used to reduce input
ambiguity, where user-drawn strokes can be categorized either as a command or as
graphic input [16].  For example, if the user draws a circle around an object, the intent
may be to select the object (a command) or to add the circle to the drawing (graphic
input).  A two-view display avoids this ambiguity by providing a drawing window for
graphic input, and a correction window (which shows recognition results as a rectified
drawing) for commands.

5.2 Superimposed Drawing Annotations
Superimposed drawing annotations (displayed in a contrasting colour) can be used

in various ways.  The results of glyph recognition can be presented via superimposed
bounding boxes and labels.  However, this gives the display a cluttered appearance.  We
have developed a neater, more readable way of displaying character recognition results,
as shown in Figure 2.  Lightly-coloured typeset symbols are placed behind the user’s
handwritten symbols.  The typeset symbols are sized and scaled to fit in the bounding
box of their associated handwritten symbol.  Initial results are encouraging, with both
handwritten and typeset symbols clearly visible.

The Electronic Cocktail Napkin uses superimposed drawing annotations to provide
recognition and constraint feedback [13].  For example, a constraint [28] can cause one
node to move whenever the user moves another node.  The Electronic Cocktail Napkin
displays constraints as superimposed drawing annotations, analogous to dimensioning
annotations in mechanical engineering drawings.  In conclusion after user trials, Gross
and Do recommend that The Electronic Cocktail Napkin be run with low-level echoing
and rectification turned off, to avoid distracting the user.



5.3 Rectification and Morphing
Rectification replaces drawing elements by stylized versions of their shapes.  This

provides useful feedback, but a user can be disoriented by the sudden change in drawing
appearance.  Morphing reduces this problem by displaying a series of images that show
a smooth transition from the input to the rectified feedback [1].  Our mathematics
recognition system uses a style-preserving morph in which the shape of the handwritten
strokes is preserved; the symbols are gradually moved and resized to display the
baselines that make up the structural interpretation of the mathematical expression
(Figure 2).  An experiment compared user performance with morphing feedback to user
performance with typeset feedback shown in a separate window [30].  Expression-entry
(and correction) time was equally good under both conditions.  This is despite the fact
that the style-preserving morph does not provide explicit symbol recognition feedback,
and that the morphing itself introduces a delay of about one second.  The success of the
style-preserving morph may be due to reduced disruption of the participants' mental
map; the typeset feedback is more disruptive because participants have to shift focus
between the drawing window and the window that gives feedback via a typeset
expression.

5.4 Treatment of Ambiguity
Mankoff et al. provide an interesting discussion of user-interface issues arising

from recognition ambiguity [19].  Their goal is to create a toolkit supporting creation
of effective user interfaces for software which involves recognition.  Recognition errors
easily confuse the user, and result in brittle interaction dialogues.  Existing user
interface toolkits have no way to model ambiguity.  Mankoff et al. address symbol
recognition ambiguity, segmentation ambiguity, and target ambiguity. (Target
ambiguity occurs when it is unclear which drawing elements are the target of a user's
selection operation.)  Two design heuristics for increasing the usability of mediators
that handle recognition ambiguity are described.  The first heuristic is to provide
sensible defaults, for example highlighting the top choice in an N-best list that is
displayed to the user.  The second heuristic is to be lazy.  Put off making choices; these
can result in errors.  Later input may provide information that helps with
disambiguation, and some input (such as comments and annotations) may never need to
be disambiguated.

6. Supporting User Correction of Recognition Errors
Good user interface support is needed to allow the user to quickly locate and correct

recognition errors.  In some cases, domain-specific methods can be applied to help
locate errors.  For example, a recognition system for music notation can use audio
feedback to allow the user to listen for recognition errors.  A mathematics recognition
system can use numerical evaluation to check the correctness of recognized equalities.

Modes are commonly used to support error correction.  Our UML and mathematics
recognition systems use diagram-entry and diagram-correction modes.  The user clicks a
button to change modes.  More natural mode selection might be achieved by a two-
ended pen.  People are accustomed to using the two ends of a pencil for writing and
erasing.  The two pen ends can be interpreted in a variety of ways, perhaps using one
end for drawing the diagram and the other end for commands and corrections.  The user
need to know which mode is currently selected.  Mouse-based systems can use cursor
shape to indicate mode.  This does not carry over to our systems, because the electronic



whiteboard does not provide cursor tracking when the pen is away from the drawing
surface.  We continue to investigate ways to handle modes in our recognition systems.

Overtracing can be used to correct glyph recognition errors [13].  If the user draws a
blob that could be either 'circle' or 'box', both interpretations are retained.  The user can
later identify the element by drawing over it, this time more clearly as a box.

N-best lists have been widely used to allow a user to select from a set of
recognition alternatives.  Uses of N-best lists include the following [19]: a voice
recognition system uses an N-best list to display candidates for a misrecognized word; a
drawing system displays an N-best list for a misrecognized glyph; a drawing system
uses an N-best lists to display various ways of grouping similar glyphs.

7. Conclusion
The user interface plays a significant role in a diagram recognition system.

Unfortunately, it is difficult to define precise goals for a user interface, to find clear
guidelines for user interface construction, or to quantify the performance of a user
interface.  We have reviewed the interaction between diagram editing, generation and
recognition and have discussed five categories of user interface issues: quantifying the
performance of a user interface, supporting diagram input, executing the recognizer,
displaying recognition results, and supporting user correction of recognition errors.
Many open problems remain in all of these areas.  We look forward to discussions and
future work which will lead to improved strategies and criteria for designing,
implementing, and evaluating user interfaces for on-line diagram recognition systems.
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