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Abstract 
 

Handwritten mathematical notation contains 
ambiguities of various kinds. Here we focus on 
ambiguity in spatial relationships; in particular, we 
use fuzzy logic to treat ambiguity in subscript-or-inline 
and inline-or-superscript spatial relationships. We 
extend an existing system for recognizing handwritten 
mathematical notation, adding the capability of 
producing a ranked list of interpretations rather than a 
single top-choice interpretation. Fuzzy membership 
values are assigned to each spatial relationship; a 
given pair of symbols can have non-zero membership 
in fuzzy sets subscript and inline, or in fuzzy sets inline 
and superscript. These fuzzy membership values are 
combined to produce an overall confidence value for 
the entire interpretation. We have modified the user 
interface of our system so that a user can quickly view 
and select from the ranked interpretations when the 
highest confidence interpretation is incorrect. 

 
1. Introduction 

 
Spatial relationships in handwritten math 

expressions are highly variable [10], and often lead to 
ambiguity in the meaning of the expression (Figure 1). 
Fully automatic resolution of all ambiguities is 
unachievable: since people do not always agree on one 
“correct”  interpretation of an expression, it is 
impossible for a computer to find a single correct 
interpretation in all cases. We use fuzzy logic to model 
symbol layout ambiguities. Using this model, our 
system presents several interpretations to the user 
(Figure 2). Each interpretation has a confidence value. 
Section 3 discusses the use of fuzzy logic to compute 
confidence values. 

Many researchers have investigated the recognition 
of mathematical notation. Surveys are provided in [2] 
[4]. Here we review selected papers.  

Wang and Faure extensively investigate subscript, 
inline, and superscript relationships in handwritten 
input, statistically characterizing the ambiguity that is 
present [16]. In their tests, symbols are characterized 

only by bounding boxes; the symbol class (such as 
ascender, descender, normal) is not known. 

 
(a)   

(b)   (c)  
 

Figure 1. Spatial relationships in handwritten math 
expressions are often inexact or ambiguous. (a) The 
alignment of x+y does not reflect an intended baseline. 
(b) This expression has baseline ambiguity. 
(c) Ambiguity in dominance of division bars. 

 
 

 
 
Figure 2. An ambiguous expression is shown at the 
top. Four interpretations are shown at center. These 
are the four interpretations with the highest confidence 
values. 
 

 



 
 

Figure 3. Regions used for baseline detection in 
DRACULAE [1]. Region definition depends on 
symbol class; for example, the subscript region is 
larger for a descender symbol such as y, than it is 
for this normal symbol a. 

 
Chou uses a stochastic context-free grammar to 

create a math recognition system that handles noise and 
low-resolution images [3]; the math notation is 
assumed to be typeset using strict, known layout rules. 
Graph grammars have been used to interpret 
handwritten mathematical expressions that contain 
poorly-aligned symbols [8]; this approach involves 
extensive search and backtracking.  Tapia and Rojas 
use support vector machines and baseline structure 
analysis to recognize on-line handwritten mathematical 
expressions [15].  

Winkler et al. recognize the structure of 
handwritten mathematical expressions using a directed 
graph with soft decision making to generate multiple 
interpretations in ambiguous cases [17]. Special 
symbols (fraction, summation, product, integral, root) 
are located, and used to group surrounding symbols. 
This grouping involves soft decisions, with calculation 
of probabilities for ambiguous spatial relations, and 
generation of alternative interpretations by duplicating 
the currently processed graph. The work we report here 
uses fuzzy logic to address ambiguities in a different 
computational framework. 

Eto and Suzuki handle math expressions with OCR 
ambiguities by constructing a network with one node 
for each symbol, where the node can represent several 
possible OCR results for that symbol [5]. A labeled 
edge represents a choice of two particular OCR 
interpretations and a choice of a particular spatial 
relation. The overall interpretation is found by 
constructing a low-cost spanning tree. 

We extend an existing deterministic mathematical 
notation recognition system, which can be downloaded 
under GNU public license from [6]. This system 
consists of three main components: the user interface 
and OCR engine are from the Freehand Formula Entry 
System (FFES), as described in [14]. The third 
component is a parser called DRACULAE [1]. The 
original DRACULAE returns one interpretation for 

each input expression.  Our fuzzy logic extension to 
DRACULAE produces a list of alternative 
interpretations, each with a confidence value. 

DRACULAE operates without backtracking, and is 
able to interpret handwritten expressions containing 
poorly aligned symbols. Layout analysis in 
DRACULAE occurs by repeated extraction of 
baselines. For the expression in Figure 1(a), the main 
baseline contains three symbols: –– + y.  The first step 
in baseline extraction locates the start symbol (the 
leftmost symbol in the baseline, here ––); this is done 
using a scan of the sorted symbol list, and dominance 
analysis. Once the start symbol has been located, 
subsequent baseline symbols are located by testing 
their membership in regions defined around existing 
baseline symbols (Figure 3). Once a complete baseline 
has been extracted, recursion is used to process 
secondary baselines. In the example of Figure 1(a) the 
two secondary baselines consist of single symbols: x 
above the ––, and 2 below the ––.  A detailed 
description of these algorithms is available in [1].  

The math symbols are recursively organized into 
baselines, producing a baseline structure tree (BST) 
that represents the internal structure of the 
interpretation. The baseline structure tree can be 
directly converted to LaTeX; with additional 
processing and additional analysis of baseline structure, 
an operator tree can be produced as well. 

Fuzzy logic has a long history and many 
applications [7] [9] [11] [12] [13] [18]. Our use of 
fuzzy logic is discussed below. 

 
2. Alternative Interpretations 
 

Symbols and spatial relationships are basic 
elements in our DRACULAE system for interpreting 
math expressions. Ambiguity in the spatial 
relationships between symbols forms the basis for our 
generation of alternative interpretations. Thus we begin 
by summarizing how symbols are treated. Every 
symbol has bounding-box attributes (minx, miny, maxx, 
maxy), and a symbol class (Ascender, Descender, 
Normal, Open Bracket, Non-scripted, Root, or 
Variable Range). The centroid for a symbol is 
calculated based on the bounding box and the symbol 
class. A descender symbol's centroid lies high in the 
bounding box, whereas the centroid for an ascender 
symbol lies lower in the bounding box.  

Spatial relationships are associated with a symbol. 
The spatial relationship between this symbol and 
another symbol is determined by finding which region 
the other symbol's centroid is located in. Our original 
DRACULAE uses crisp regions (Figure 3), so any two 
symbols have a uniquely-determined spatial 
relationship. We extend this by adding fuzzy 
membership in the spatial relationships, as shown in 



Figure 4. Symbols whose centroids land in the 
SUPER/HOR region have non-zero memberships in the 
two spatial relations SUPER and HOR. Similarly, 
symbols with centroid locations in the SUBSC/HOR 
region result in non-zero memberships in the two 
spatial relations SUBSC and HOR. These regions are 
parameterized by the thresholds sp (superscript 
threshold), ub (upper base threshold), lb (lower base 
threshold), and sb (subscript threshold). These 
thresholds define the membership functions of the 
fuzzy sets super, inline, and subsc, as illustrated in 
Figure 4.  

Mathematically, if the symbol's centroid x 
coordinate lies between ub and sp, then the symbol’s 
membership 

• in super is (x-ub)/(sp-ub) 
• in inline is (sp-x)/(sp-ub) 

Similarly, if the symbol's centroid x coordinate lies 
between lb and sb, then the symbol’s membership 

• in subsc is (x-sb)/(lb-sb) 
• in inline is (lb-x)/(lb-sb) 

We use the term confidence value for the membership 
value of a symbol in the fuzzy sets inline, super, and 
subsc. If a symbol’s centroid lies in the overlapping 
ranges, the two confidence values of the symbol in 
different fuzzy sets (super and inline, or inline and 
subsc) sum to 1 according to the definitions of 
membership functions. As a result, membership 
functions in the overlapping ranges sum to 1. 
 

 
Figure 4. Definition of fuzzy regions relative to a 
symbol. Nonzero memberships in two fuzzy sets 
are possible in the regions SUPER/HOR and 
SUBSC/HOR. The right portion of the figure shows 
the membership functions for the three fuzzy sets, 
super, inline, subsc. 
 

 
Figure 5. An example to illustrate the operation of 
Extended DRACULAE. 
 
Mathematical expressions are analyzed using 

multiple passes over the input symbols.  The four 
major passes perform layout analysis, lexical analysis 
for tokens, lexical analysis for relations, analysis of 
expression syntax, and analysis of expression semantics 
[1]. Our focus is on the layout pass; this is where most 
of the changes were needed, to extend DRACULAE 
into a system that computes alternative interpretations 
of the input symbols. 

The operation of the extended layout pass is 
illustrated in Figure 6, using the input shown in Figure 
5. The layout pass recursively finds baselines. The first 
step of the layout pass is to find the start symbol of the 
baseline that dominates the current set of symbols. In 
this example, the start symbol is a. The next symbol of 
the baseline is inline with the start symbol. Here, many 
possible baselines are produced, by considering the 
various combinations of membership values in the 
fuzzy sets inline, subsc, and super. For the example in 
Figure 5, 11 different dominant baselines are produced. 
The lower portion of Figure 6a illustrates the dominant 
baseline ad; the notation a[ bc]d[ eb]  means that 
secondary baselines will be constructed from symbol 
sets bc and eb. After construction of the secondary 
baselines, which have two alternatives each, four final 
interpretations are produced using the dominant 
baseline ad. In total, the 11 dominant baselines expand 
into 18 final interpretations. 

The number of interpretations is affected by the size 
of the fuzzy regions SUPER/HOR and SUBSC/HOR. 
We use two threshold ratios, base threshold ratio (b) 
and threshold ratio (t), as well as the y center (center) 
of a symbol, to control the size of these regions: 
• h = maxy – miny 
• lb = center – b *  h 
• ub = center + b *  h 
• sp = 2 * (maxy – t * h) – ub = ub + (1 – 2t – 2b)h 
• sb = 2 * (miny + t *  h) – lb = lb – (1 – 2t – 2b)h 

The condition t + b < 0.5 must be applied to make the 
definitions of sp and sb work. The example in Figure 6 
uses a value of 1/8 for the base threshold ratio and a 
value of 1/6 for the threshold ratio, producing the 18 
final interpretations described above. If we change both 
threshold ratios to 1/6, this increases the size of HOR, 
and reduces the size of the SUPER/HOR and 
SUBS/HOR regions in Figure 4. As a result, the 
number of final interpretations drops to 10. 
 



 
 

(a) Extracting baselines 
 

Interpretations confidence value 
ebbcda  0.553571 

bda ebc
 0.446429 

eb
dabc  0.225 

babce
d  0.225 

bebcda  0.2 

be
dabc  0.2 

b
bcdea  0.196429 

debabc  0.196429 

bdeabc  0.125 

ebabcd  0.125 

bc eb da  0.0625 

ebb da c  0.0625 

bda ebc  0.0625 

b
b dea c  0.0625 

deba cb
 0.0625 

babe
cd

 0.0625 

bc eab
d

 0.0625 

ebab
dc  0.0625 

 
(b) Final interpretations with fuzzy confidences 

 
Figure 6. (a) Alternative interpretations produced 
when the Layout Pass processes the input in Figure 
5. The top part of the figure illustrates the extraction 
of the dominant baseline. In this case, 11 different 
dominant baselines are extracted. The dominant 
baseline ad is illustrated in detail: the two 
secondary baselines (using symbol sets bc and eb) 
have two interpretations each, resulting in four final 
interpretations built on the dominant baseline ad. (b) 
Final interpretations with fuzzy confidences with 
base threshold ratio = 1/8, threshold ratio = 1/6. 
 
 

3. Computing Confidence Values 
 

Confidence values for individual spatial 
relationships are given by the fuzzy membership 
functions illustrated in Figure 4. These individual 
confidence values need to be combined to compute a 
confidence value for an entire interpretation. As is 
common in fuzzy logic systems, we use combination by 
minimum, computing the confidence of an entire 
interpretation as the minimum of the confidence values 
of the spatial relationships used in that interpretation. 
This combination rule can result in many ties in 
confidence values: if many final interpretations share a 
lowest-confidence spatial relationship, then differences 
in other parts of the interpretations are not reflected in 
the confidence values assigned to the overall 
interpretations.   

We experimented with another method of 
combining confidence values: combination by 
multiplication. Here, the confidence of a final 
interpretation is computed as the product of the 
confidence values of the spatial relationships used in 
the interpretation. This combination rule produces 
fewer ties in confidence values. Unfortunately, it 
penalizes interpretations that have larger numbers of 
component spatial relationships. In future work, it 
would be interesting to compare the rank-order of 
confidence values produced algorithmically with the 
rank-order of interpretations produced by human 
subjects. 

 
 



4. Conclusion 
 

We have applied fuzzy logic to characterize the 
ambiguity in subscript and superscript relations in 
handwritten mathematical expressions. Two threshold 
ratios are used to define the membership functions in 
fuzzy sets super, inline and subsc. If the fuzzy regions 
are defined to be large spatially, then a large set of 
alternative interpretations is produced, and conversely, 
small fuzzy regions produce a small list of alternative 
interpretations. In future work, an adaptive method for 
adjusting the size of fuzzy regions may be found.   
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