
Issues in the Practical Use of Graph Rewriting
Dorothea Blostein, Hoda Fahmy, Ann Grbavec

Department of Computing and Information Science
Queen’s University, Kingston, Ontario, Canada K7L 3N6

blostein@qucis.queensu.ca

Abstract. Graphs are a popular data structure, and graph-manipulation
programs are common. Graph manipulations can be cleanly, compactly, and
explicitly described using graph-rewriting notation. However, when a
software developer is persuaded to try graph rewriting, several problems
commonly arise. Primarily, it is difficult for a newcomer to develop a feel for
how computations are expressed via graph rewriting. Also, graph-rewriting
is not convenient for solving all aspects of a problem: better mechanisms are
needed for interfacing graph rewriting with other styles of computation.
Efficiency considerations and the limited availability of development tools
further limit practical use of graph rewriting. The inaccessible appearance of
the graph-rewriting literature is an additional hindrance. These problems can
be addressed through a combination of “public relations” work, and further
research and development, thereby promoting the widespread use of graph
rewriting.

1. Introduction
Graph rewriting has the potential to be useful in a large variety of applications.

Graphs provide an expressive and versatile data representation. Typically, nodes
represent objects or concepts, and edges represent relationships among them. In
addition, hierarchical relationships can be depicted by node-nesting [Hare88] [SiGJ93].
Auxiliary information is expressed by adding attributes to nodes or edges. Given the
widespread use of graphs as a data representation, it is natural that graph manipulations
form the basis of many useful computations. Graph manipulations can be represented
implicitly, embedded in a program that, among other things, constructs or modifies a
graph. Alternatively, graph manipulations can be represented explicitly, using clearly-
delineated graph rewriting rules that modify a host graph. The explicit use of graph-
rewriting rules offers several advantages. Graph rewriting provides an abstract, high-
level representation of a solution to a computational problem. Also, the theoretical
foundations of graph rewriting assist in proving correctness and convergence properties.

Despite this potential, graph rewriting has not attained widespread practical use.
To discover the reasons for this, it is helpful to consider an outside viewpoint:

Mr. and Mrs. Maggraphen manage a small software house in Bavaria. Most of
their important data structures are graphs. Currently, all of their programs are
written in C, with much of the code devoted to graph manipulations.

The Maggraphens are planning for the future, and want to switch from C to a
graph-rewriting language.

The Maggraphens are enthusiastic about graph rewriting, but have many questions. To
begin with, important practical considerations arise. Will the graph-rewriting language
be fast enough? Are there tools for developing, displaying, and debugging graph-
rewrite rules? Suppose, optimistically, that the answer to both questions is “Yes”.

 This research is supported by Canada’s Natural Sciences and Engineering Research Council.

2

Even so, there is another major hurdle: the Maggraphens can’t imagine how to recast
their C programs in terms of graph rewriting. They desperately need small-scale advice
(how to formulate individual rewrite rules) and large-scale advice (how to organize a
collection of rules). Let us consider a sampling of their questions. (Figure 1 shows
our terminology.)

Graph g A directed or undirected graph. Nodes and/or edges may be labeled and
may have associated attributes.

Graph Rewrite Rule A rule specified by:
• g l →

�→→→ g r gl and gr are unattributed graphs. During rule application, an attributed
subgraph gl

host (isomorphic to gl) is replaced by gr
host (a subgraph

created to be isomorphic to gr).
• Embedding Information

Calculates post-embedding edges from pre-embedding edges (defined
below). Embedding information can be textual or graphical.
Gluing models specify embedding with a gluing isomorphism.

• Application Condition (Optional)
Defines conditions on attribute values or host-graph structure.
These conditions must hold for rule application to proceed.

• Attribute Transfer Function (Optional)
Assigns attribute values to gr

host, using attribute values in gl
host.

Host Graph g The graph to which a rule is being applied.

gl
host A subgraph of the host graph g, isomorphic to gl. In some models, gl

host

must be an induced subgraph: if an edge of g connects two nodes of gl
host,

then that edge must be part of gl
host.

RestGraph The graph g - gl
host. (The “-” operator denotes removal of all nodes and

edges of gl
host and all edges with one or both endpoints in gl

host.)

gr
host A subgraph isomorphic to gr; used to replace gl

host.

Pre-embedding Edges the set of edges joining gl
host to RestGraph

Post-embedding Edges the set of edges joining gr
host to RestGraph

Figure 1. Our terminology for graph rewriting. These definitions assume the use of
subgraph isomorphism, where some models actually allow for a general graph morphism.

2. Mrs. Maggraphen: We are new to graph rewriting. Where do we
start?

The Maggraphens are looking to us, the graph-rewriting community, as a source of
information about how to express computations in graph rewriting. Consider an
analogous change from C to Lisp programming: avid C programmers who cannot use
Lisp effectively (due to a C mindset that dominates their approach to programming),
can absorb “Lisp culture” by immersing themselves in an environment of experienced
Lisp programmers. These same C programmers, in attempting to learn graph
rewriting, may have trouble locating sources of “graph-rewrite culture”. The graph-
rewriting community should make an effort to promote such a culture, to allow
newcomers to quickly develop a proper mindset for performing practical, effective
computations using graph rewriting. Relevant materials include the following:

3

• Accessible written expositions about the practical use of graph rewriting: systems
organizations, styles of computation, etc.

• Easily-available tools for creating, editing, executing, debugging graph rewriting
systems (Section 4).

• Examples of non-trivial, practical uses of graph rewriting. Complete, executable
systems are most helpful. These illustrate various computational styles in which
graph rewriting may be used. (Relevant references, discussed in [BlFG95], include:
software engineering [EnLS87] [ELNSS92] [LoKa92] [Pfei90], syntactic pattern
recognition [Fu82], document image analysis [Bunk82a] [FaBl93] [GrBl95]
[CoTV93], 3D object recognition [LiFu86], visual programming environments
[EgPM92], diagram editors [Gött92] [DoTo88], databases [EhKr80], and semantic
networks [EhHK92]. Further discussion is given by [Panel91].)

The fostering of a graph-rewriting culture will go far toward the popularization of graph
rewriting.

3. Mr. Maggraphen: In C, we use standard algorithms (searching,
sorting, hashing) and algorithm-design methods
(divide-and-conquer, dynamic programming,
greedy algorithms). What is the equivalent to
this in graph rewriting?

Currently, we have little to offer the Maggraphens, in terms of graph-rewrite-
oriented techniques for algorithm design or analysis. We have few libraries of standard
graph-rewriting code. (An inspiring example is given by the parameterized graph-
rewrite rules for abstract-syntax-tree manipulation reported in [ELNSS92]).

We need to develop specialized algorithm design techniques, geared toward graph
rewriting as the primitive operation. Precedents for such specialized algorithm design
techniques include VLSI design (with area*time used as a cost function) and optical
computing (where primitive operations include Fourier transform, convolution, union
and intersection of figures, coordinate transforms).

4. Mrs. Maggraphen: What development tools are available?
As everyone is well aware, practical use of graph rewriting depends heavily on the

availability of development and debugging tools. Unfortunately, construction of these
tools is a time-consuming, complex task, due to the need to combine textual and
diagrammatic elements, the need to provide readable displays of large graphs, and the
need to visualize the interactions among graph rewriting rules. Development of graph-
rewrite debugging techniques is an interesting and challenging research topic. Currently
it is difficult even to define what kind of tools are needed to support widespread practical
use of graph rewriting. This will become clearer over time, as the improving set of
available tools allow us to gather more extensive experience with executable graph-
rewriting systems.

For the reader interested in experimenting with graph rewriting, here is a brief list
of graph-rewriting environments. The first two environments are mature enough to be
in widespread use, and are under active further development. The remaining
environments may become available for general use. Our apologies if this list is
incomplete.

- PROGRES provides extensive facilities for ordered graph rewriting [NaSc91]
[ELNSS92]. Contact andy@i3.informatik.rwth-aachen.de to obtain this software.

4

- GraphEd [Hims91] provides extensive graph-display capabilities, and supports a
limited form of graph-rewriting (direct-derivation steps of context-free rewrite
rules). Contact himsolt@fmi.uni-passau.de to obtain this software.

- Pfeiffer describes development plans for a graphical editing environment for
algebraic graph rewriting [Pfei90]. In the meantime, a textual representation of a
graph grammar is compiled into C.

- A prototype implementation of algebraic graph transformation is described in
[LöBe93]. At that time, the tool performed direct derivation steps in the single-
pushout approach.

- Göttler [Gött92] mentions a succession of implementations for executing ordered
graph rewriting (Y and X notation); a new C implementation is under
development, including a graphical editor for X notation rules.

5. Mr. Maggraphen: Can graph rewriting be efficient? Isn’t
subgraph-isomorphism testing intractable?

This question readily comes to mind, but we can give some reassurance. It is true
that subgraph-isomorphism testing is an NP-complete problem in general, but various
factors make it tractable in a graph-rewriting system. Firstly, it is often possible to
express a computation using small subgraphs on the left-hand-side of rewrite rules.
Secondly, node labels, edge labels, and directed edges drastically reduce the search space
for isomorphic subgraphs. Finally, some graph-rewriting systems have certain phrases
that frequently appear in application conditions; these can be exploited to greatly reduce
the search space for isomorphic subgraphs that meet the application condition. The
optimization of subgraph-isomorphism testing is discussed in [BuGT91] [Zünd94].

Of course, graph rewriting should not be marketed as a fast style of computation:
the von Neumann architecture (geared toward instruction fetch and execution, with a
bottleneck between processor and memory), is not well-suited to the interpretation of
graph rewriting. Strong demand could motivate the development of a new computer
architecture with graph-rewriting as a fundamental operation. First we would need to
develop suitable graph-rewriting architectures in software, and thus popularize graph
rewriting as a style of computation. Special-purpose graph-rewriting hardware may
sound far-fetched, but consider neural-network computations as an analogy: years of
research with software-implemented neural-net architectures have now resulted in
commercially-available neural-net architectures implemented as VLSI circuits.

6. Mrs. Maggraphen: How can we organize rewrite rules?
The graph-rewriting literature reports on various methods of organizing a collection

of graph-rewrite rules: unordered, ordered and event-driven graph-rewriting systems, as
well as graph grammars (Table 1). This taxonomy arose from our efforts to organize
our reading of the graph rewriting literature. (This literature is confusing because many
systems are called “grammars”, whether they define a graph-language or not.) An
understanding of these systems-organizations provide a helpful starting point in the
process of deciding how a computation could be expressed as graph rewrite rules.

The choice of system organization greatly affects the number of rewrite-rule
applications that must be tried during execution. Parsing with a grammar normally
requires backtracking, and frequent testing of inapplicable rules. In contrast, an ordered
graph rewriting system can directly transform an input graph into an output graph, with
a limited number of production rules under consideration at any given time [Bunk82a].
Event-driven graph-rewriting systems can be highly time-efficient, applying rules only
in direct response to external actions. Thus, if an application is such that it can be

5

implemented using event-driven graph-rewriting, then likely it can run with acceptable
time-efficiency. If the application calls for ordered (or partially ordered) graph rewriting
without backtracking, then it may well run with acceptable efficiency. If the application
calls for graph grammar use, then careful grammar and parser construction (context free,
if possible) are necessary if there is to be hope of parsing speeds allowing large-scale
practical use. In any case, graph rewriting can be useful even if it does not provide an
acceptably efficient implementation: a practical software development cycle can include
the use of graph rewriting to form an executable specification (e.g. [ZüSc92]).

We now briefly review the practical use of these four system organizations.

Unordered graph rewriting
An excellent example of unordered graph rewriting is provided by ∆-rewriting

[KaLG91] [LoKa92]. The rewriting system is given an initial host-graph (e.g. the
quicksort example of [LoKa92, p. 177] uses a list of numbers to be sorted, the
specification of the Actor language of [KaLG91, p. 484] uses a graph compiled from an
Actor program). This initial host-graph is transformed via graph-rewrite rules, either
infinitely (as in the dining philosophers example of [LoKa92, p. 112]), or with
termination (as in the quicksort example). The platform concept used to modularize ∆-

System Components System Execution

Unordered Graph-rewriting System

A set of graph-rewrite rules. Rewrite the given host graph (choosing
nondeterministically among applicable
rules) until no further rules apply.

Graph Grammar

A set of graph-rewrite rules (productions).
A start graph.
A designation of labels as terminal or
nonterminal.

In generative use, rewrite the start graph to
obtain a terminal graph (no non-terminal
labels.) The set of generatable terminal
graphs is the language of the grammar.
For recognition, parse the given graph:
find a sequence of rewrite-rules that derive
the given graph from the start graph.

Ordered Graph-rewriting System

A set of graph-rewrite rules.
A control specification (provides complete
or partial ordering of rule-application).

Rewrite the given host graph (choosing
nondeterministically among applicable
rules consistent with the control
specification) until a final state in the
control specification is reached.

Event-driven Graph-rewriting System

A set of graph-rewrite rules.
An externally-arising sequence of events.

Rewrite the given initial host graph:
rewrite rules are executed in response to
events.

Table 1. Four organizations for graph-rewriting systems.

6

rewriting is discussed in Section 8. Unfortunately, no ∆-rewriting environment is
available; current experience is limited to paper-based descriptions of ∆-rewriting
systems.

Graph grammars
In a pure graph grammar, productions can be listed in any order, but order-

dependence often arises in practice. Once a developer has chosen a particular parser, the
developer is usually aware of the order in which the parser tries alternatives. The
developer may make use of this to design a smaller or faster graph grammar. For
example, Anderson [Ande77] uses a set-based “coordinate grammar” to recognize
mathematical notation. He describes his reliance on production-rule ordering to
distinguish an input “cos” as a word denoting a trigonometric function, rather than as
an implied multiplication denoting “c*o*s”. It would be possible to rewrite the
grammar to avoid this order dependence, but the grammar would increase in size and
complexity. The drawback of such order dependence is that the language is no longer
defined by the grammar alone, but arises through the interaction of the grammar with a
particular parser.

In addition to order-dependence, there is the issue of reversibility. Can a given
grammar be used both for recognition and generation? While a pure grammar is
reversible, in practice non-reversible constructs like application conditions and attribute
computations are common. Reversibility is desired in various domains, but difficult to
achieve. For example, there is on-going research into reversible string-grammars for
natural language processing [Strz90]. On a related note, a graph grammar with non-
reversible rules is limited to either bottom-up or top-down parsers.

Practical use of graph grammars is seriously hampered by the high complexity of
parsing. Sub-exponential parsers have been developed for certain restricted classes of
graph grammars. A selection of parsing references are as follows. Kaul presents a
linear-time precedence parser for a special class of context free graph-grammars
[Kaul83]. Bunke and Haller describe an extension of Early’s parser for context-free plex
languages [BuHa92]; this parser permits left-recursion and is capable of recognizing
partial structures. Recently, a parsing algorithm applicable to context-sensitive graph
grammars has been developed [ReSc94]. Egar et al. use a graph-grammar parser in the
design of a visual programming environment for clinical protocols [EgPM92]. Lin and
Fu recognize three-dimensional objects (in two-dimensional images) using a semantic-
directed top-down backtrack parser for plex grammars [LiFu86]. Collin et al. interpret
dimensions in engineering drawings using a plex-grammar parser that mixes top-down
and bottom-up processing [CoTV93]. A chart-based parser for hierarchical graphs is
discussed in [MaKl92]. More recently, Klauck reports on a heuristically-driven chart
parser and it’s application to CAD/CAM [Klau94]. On a related note, Henderson and
Samal discuss efficient parsing of stratified shape grammars, building on the table-
driven methods used for LR(k) string grammars [HeSa86]; these techniques might be
relevant to graph-grammar parsing.

Ordered graph rewriting
For many computations it is convenient to order, or partially order, a collection of

rewrite rules. For example, Bunke recognizes circuit diagrams by first applying a
collection of noise-reduction rules [Bunk82a]. It is critical that these noise-reduction
rules be applied first, and exhaustively, before application of rules for recognition of
transistors, capacitors, and so on. Similarly, a recognition approach for music notation
[FaBl93] uses ordered recognition stages, each of which consists of three ordered phases
(Build creates edges, Weed removes inconsistent edges, and Incorporate prunes the graph

7

while adding semantic information to attributes). Graph applications in software
engineering have made extensive use of ordered graph rewriting (e.g. [ELNSS92]).

Various forms of ordered graph rewriting are possible, depending on the use of non-
determinism and backtracking:

• A completely deterministic system results from pairing a deterministic control
specification with the use of cursor-nodes (also called demon nodes) to indicate the
desired host graph location for rule application. Determinism is desirable in
editing applications, where end-users expect a deterministic response to an editing
command (e.g. [Gött92]).

• Partially ordered rewrite systems, without backtracking, have been used for
software engineering (e.g. [ELNSS92]) and diagram recognition (circuit-diagrams
[Bunk82a], music-notation [FaBl93] [Fahm95], math-notation [GrBl95]). In the
diagram recognition work, the control specification orders the phases that make up
the recognition process; rules within a phase are unordered or partially ordered, and
all non-deterministic alternatives lead to a desired result.

• Partially ordered rewrite systems, with backtracking, can be expressed in the
PROGRES language [ZüSc92]. The PROGRES interpreter automatically
backtracks in the search for a successful path through the control specification:
alternate matches for gl

host, and alternate control paths, are tried as needed. This
allows straightforward coding of classical AI search problems as a partially-ordered
collection of rewrite rules.

Control specifications can be expressed in a variety of forms, including lists, diagrams,
or text. The simplest control specification associates two sets with each production
rule. The Success set lists the possible production(s) to try after successful application
of the current production. The failure set lists productions to try after unsuccessful
application of the production. This can be specified in tabular form [Fu82], which
quickly becomes difficult to read. Diagrammatic control specifications (control
diagrams) are used by [Bunk82a], with extensions by [DoTo88] [FaBl93] and others.
For example, a block condition allows the control diagram to test attribute values of
any nodes involved in the most recent production [DoTo88]. To permit more flexible
control constructs, the control specification can take a textual form, similar to an
imperative programming language. For example, PROGRES provides deterministic
and non-deterministic versions of And, Or, Loop [ZüSc92][ELNSS92], in addition to
encapsulation tools such as transactions and subdiagrams.

Event-driven graph rewriting
Whereas ordered graph rewriting systems provide an internally-imposed ordering of

the rewrite rules, event-driven systems have an externally-imposed ordering, arising
from the ordering of external events. This is illustrated by the library system of Ehrig
and Kreowski [EhKr80]. An external event, such as loaning, returning, or ordering a
library book, results in the invocation of a corresponding rewrite rule. Parameters
provide the rewrite rule with information describing the details of the event. The
authors mention an anticipated need for control structures within a single transaction.

Ordered graph rewriting can be used to regulate event-driven graph rewriting. In the
Forrester-diagram editor of [DoTo88], the control specification defines which editing
events are legal at any given point. Events not foreseen by the control specification are
disallowed, resulting in an error message to the user. A similar structure is used by the
diagram editors described in [Gött92].

8

7. Mr. Maggraphen: How do we choose a graph-rewriting
mechanism?

A large variety of graph-rewriting mechanisms have been investigated. No one
rewriting mechanism is universally suitable. Practical choice of a rewriting mechanism
depends on the application, on the availability of tools, and on personal taste. Relevant
factors include the power of the embedding, formal properties of rewrite rules,
readability and intellectual manageability, and efficiency of rule application.

Power of the Embedding
Complex embedding mechanisms permit significant graph inspection and graph
manipulation during the embedding step. Conversely, highly-restricted embedding
mechanisms, such as the invariant embedding of the gluing models, are inconvenient
for expressing certain common graph operations such as node deletion (Figure 2).

The choice of an embedding mechanism involves a tradeoff between using fewer,
but complex, rewrite rules versus using a larger number of simpler rules. Up to now,
we have few practical examples of graph-rewriting systems that make heavy use of
complex embeddings. It appears that many software designers find it is easier or more
natural to express a computation using more rules of a restricted embedding type.

A ∅→

A

noden

node1

...
noden

node1

...→

(a) (b)
Figure 2 Delete an A-labeled node and all incident edges. (a) With an elementary
embedding mechanism. (b) With a gluing model. The invariant embedding necessitates that
gl be expanded to include all edges incident on the A-labeled node. A set of rewrite rules is
used to enumerate each possible configuration of incident edges. (The “...” notation,
denoting variable repetition of nodes and edges, is adapted from [EhHK92]. Similarly,
∆−notation uses *-groups, which denote zero or more occurrences of starred graph elements,
to implement node-deletion [KaLG91, p. 478]. A ∆-rule that deletes a node is syntactic
shorthand for an infinite collection of ∆-rules that meet the gluing condition.)

Formal Properties of Rewrite Rules
Formal properties of graph rewriting are practically important. The strong theoretical
foundations of the gluing models can offer significant advantages. For example,
algebraic graph rewriting simplifies construction of proofs about the integrity of a
database system, as illustrated by the library-transaction system of [EhKr80].

Using rewrite rules with formally-characterized properties, graph rewriting can
provide a formal definition of graph classes; examples include the class of well-formed
Forrester diagrams [DoTo88] and the class of well-formed semantic networks
[EhHK92].

Readability and Intellectual Manageability
Readability of rewrite rules affects intellectual manageability, system development
time, ease of maintenance, and ease of debugging. It can be particularly difficult to
present complex embeddings in a readable way. Since textual embedding specifications
can be difficult to read, various diagrammatic notations have been proposed (Figure 3).
Visual presentation can be simplified by avoiding the duplication of graph-parts

9

common to gl and gr (Figure 4). In our opinion, these diagrammatic depictions are
advantageous for embeddings of intermediate complexity:

• Elementary embeddings can be specified textually, and are easily perceived from
visually-corresponding nodes in gl and gr (Figure 5). Similarly, gluing isomor-
phisms are effectively conveyed by the visual correspondence of gl and gr nodes, as
in [EhHK92].

• Embeddings that are more complex than the elementary type (e.g., they involve
testing of node-labels in RestGraph, or following of edges in RestGraph) are easier
to perceive if a diagrammatic notation is used instead of a textual one.

• Selected embedding paths that are very long and highly complex benefit from
textual rather than diagrammatic depiction. An example is the use of the
PROGRES “path” construct, which permits extensive searching and testing of the
host-graph, as part of the embedding process [ELNSS92].

Some applications require complex embeddings, others don’t. In our experience, major
difficulties arise not in the formulation of individual rewrite rules, but in the structuring
of a large collection of rules that interact in a desired way.

gr

Optional Context
(Embedding)

gl

unique part of gl
(to be deleted)

Required Context
(parts common to gl and gr)

Optional Context
(Embedding)

unique part of gr

(to be added)
Required
Context

Prohibited Context
(the "restriction")

Application Condition
(the "guard")

unique part of gl
(the "retraction")

unique part of gr

(the "insertion")

(a) Y notation [Gött83] (b) X notation [Gött92] (c) ∆ notation [LoKa92]

Figure 3 Three diagrammatic notations for graph-rewrite rules. In Y and X notations, the
embedding is shown as optional context: these diagrammatic depictions of embedding are
used if they match in the host graph. The required context must match in order for the rewrite
rule to be applied. In ∆ notation, the center of the ∆ is used both for required and optional
context, with a * placed next to the optional parts. (Elements of a * group may occur zero,
one or more times.) The prohibited context depicts host-graph structure that must not be
present; restrictions on labels and attributes are expressed textually in the guard.

10

A B
+

A BBA BA

Figure 4 Graph-rewrite rules to add a second edge between an A-labeled node and a B-
labeled node. Avoiding duplication of graph-parts common to gl and gr shrinks the drawing
of gl and gr, and greatly reduces the graphical depiction of the embedding. (The Y-notation
rule appears in [Gött92, Fig. 14].)

3

Line

u

v

2

1

3'

Fraction

u

v

2'

1'

Below

Above

Below

Above

→

Application Condition: (u,v = any node label)
 & (m(2) = undetermined)

(Default) Embedding: {(1,1'),(2,2'),(3,3')}

Attribute Transfer: m(2') = '/'

(a)

Line Fraction

x x

y y

Below Below

AboveAbove

(b) (c)

(a)?

?

Line Fraction

?x ?x

?y ?y

Above

Below Below

Above

*

*

?

?

Figure 5 Textual (a) versus graphical (b, c) depiction of a simple embedding. These are
three notations for a graph-rewrite rule to replace a Line-labeled node by a Fraction-labeled
node, in the context of incoming Above and Below edges (as used in [GrBl95]). (a) The
analogous embedding is conveyed by similarly-denotated nodes in visually-corresponding
places; this is reinforced by the textual description “{(1,1’), (2,2’), (3,3’)}”. (b) In X-
notation, the embedding is conveyed as optional context. One filled-in node (indicating
arbitrary node label) and two edges depict a node-correspondence. Since directed edges are
used, this must be repeated for incoming and outgoing edges. (c) In ∆-notation, the
embedding is conveyed similarly, using *-groups to indicate 0 or more occurrences of the
starred structures.

11

Isomorphisms versus General Graph Morphisms
Selection of a rewrite mechanism involves choosing isomorphisms or general

morphisms for finding a subgraph gl
host matching gl. The utility of general graph

morphisms is illustrated by small examples in the literature ([EhHK92, p. 560],
[KrRo90, p. 200]). However, general morphisms could easily result in unexpected
matches. We would be interested to hear of the use of general graph morphisms in
large-scale system; debugging of such rewrite systems could be difficult.

A useful compromise is to allow the rule-author to selectively and explicitly
indicate where general morphisms may be used. For example, ∆-rewriting uses
subgraph isomorphism, but with a label-subscript notation (called a fold) to explicitly
indicate groups of nodes which can optionally be matched to a single host-graph node
[KaLG91] [LoKa92]. The utility of this construct is demonstrated by a rule to insert an
element into a circular list: one rule works for circular lists of any length ≥ 1.

Extensions to the Rewrite Mechanism
Many extensions to rewrite mechanisms are useful in practice [BlFG95]. These

include hierarchical label organization; calculation of attribute values; application
conditions; parameters to graph-rewrite rules; variable node and edge labels within
rewrite rules; variable graph structure within rewrite rules (e.g. optional or repeated
nodes and/or edges). While all of these extensions are useful in certain applications,
care must be used to select only the features necessary to cleanly express the graph
transformations needed in a given application.

8. Mrs. Maggraphen: How do we modularize a graph-rewriting
system?

A graph-rewriting system that is constructed in a modular way is easier to design,
implement, debug, and maintain. Various aspects of a graph-rewriting system can be
modularized -- the host-graph structure, the rewrite rules, the control specification.
This is an active research area. Selected approaches to modularization are listed below.
Several of these approaches can be used in combination.

Modular specification of host-graph structure
A description of allowable host-graph structure provides a foundation for the design

of a graph-rewriting system. For example, the graph scheme in PROGRES defines
statically-declarable graph properties [ELNSS92]. The graph scheme defines a class
hierarchy for node labels and edge labels (multiple inheritance is allowed). Based on
this, edge typing information is declared: for each edge-label, define what node-types are
admissible at the endpoints of the edge. This static type information allows useful
compile-time and run-time checks on graph-rewrite rules and on host-graph structure.

Host-graph triggers
This method of modularization is proposed for an unordered graph-rewriting system

(wherein a host-graph is nondeterministically transformed by a set of graph-rewrite
rules, with no control specification). To allow the designer to divide a large problem
into more manageable subproblems, ∆-rewrite systems use platforms of related rules
[LoKa92] [ToKa94]. These platforms are defined via specially labeled nodes called
trigger nodes. To define a platform, choose a new trigger label. Every rewrite rule in
the platform contains this trigger node in gl (i.e., in the required context or retraction).
If some rewrite rule wishes to invoke rules in a particular platform P, the rewrite rule
adds the P trigger to the host graph. This satisfies one of the preconditions of rule-
application from platform P, and thus may result in execution of a P-platform rule.
The label of a trigger node is a tuple of arbitrary structure, and can include parameters to

12

influence the resultant application of a P-platform rule. This style of computation has
been used to solve (on paper) a variety of specification and concurrency problems.

Modular control specification
In an ordered graph-rewriting system, the control specification can be structured in a

modular way. For example, PROGRES provides transactions and subdiagrams as
encapsulation tools [ZüSc92]. Ordering can be used to structure the computation into
phases; for example, Build-Constrain-(Rank)-Incorporate recognition stages are used in
[FaBl93] [GrBl95].

Two-level rewrite rules
Generic graph-rewrite rules (expressed as graphs) can be transformed via meta-rules,

to produce executable rewrite rules. This has been used in a system to describe legal
database transactions [GöHi94]: complex transactions are conveniently expressed as a
hyperproduction, which is transformed by a metaproduction to produce the final
production. This construct allows general operations to be expressed generically, as a
hyperproduction, and then used in a variety of ways. For example, a hyperproduction
for the manipulation of geometric objects can be specialized (via metaproductions) to
treat polylines or rectangles.

Modules of rewrite rules arising from host-graph locality
In many applications, a host graph can be represented hierarchically, with an

abstract level, as well as a refined level (consisting of local graphs and interfaces). In
this case, graph productions can be modularized, with some modules transforming local
graphs, others changing interfaces or the global graph, and yet others changing the
graph hierarchy (split or join local graphs) [EhEn94] [Taen94].

Inheritance
Inheritance is a powerful tool for layering in object-oriented system design.

Several forms of inheritance can be used within a graph-rewriting system; some
examples are mentioned earlier in this list, as well as in [EhEn94].

Import-Export-Interface
As described in [EhEn94], graph transformations can be organized into modules,

where each module has an import interface, local operations, and an export interface.
This is challenging to implement, because imported graph-rewrite rules are known by
name only.

9. Mr. Maggraphen: How can we design a graph-rewriting system to
accommodate evolving host-graph structure?

The Maggraphens are producing software for clients with changing needs. Thus
they need to plan for evolution of their graph-rewriting system. Adding a new feature
may require extensions to the host-graph representation; for example, new node labels
and edge labels may be introduced. When this happens, the Maggraphens expect most
of their old rewrite rules to continue to work properly, and they want it to be clear
which of the old rules must be updated in response to the expanded host-graph
representation. Many aspects of a rewrite system bear on this problem, such as the use
of graph schemes to statically declare permissible host-graph structure [ELNSS92].
Here we consider only the effect of choosing induced versus non-induced subgraph
matching. (If gl

host is an induced subgraph of g, then gl
host

 must include all local edges
of g, i.e. all edges of g that connect two gl

host nodes. A non-induced subgraph may
omit some or all of these edges. This is illustrated in Figure 6.)

13

Compared to non-induced subgraphs, induced subgraphs meet more stringent
matching criteria, and provide more information about local host-graph structure. The
following consequences result.

• Using induced subgraphs increases the number of rewrite rules: gl cannot match
unless the rule-author has anticipated all the edges present in that part of the host
graph. Various edge-configurations must be enumerated in separate graph-rewrite
rules (where a single non-induced rewrite rule could suffice).

• Non-induced subgraphs require extra application conditions, necessary to ensure the
absence of certain host-graph edges.

• Implicit edge-deletion is a major pitfall of non-induced subgraphs. Edges present
in host-graph but not mentioned in gl are deleted by rule application (Figure 6).

These points become particularly significant in case of host-graph evolution. Consider
the addition of a new type of edge, with the new edge-label “Grow”. Ideally, the old
graph-rewrite rules should continue functioning as before, so that we merely need to
create a few new rules that directly process the Grow edges. Both induced and non-
induced subgraphs disappoint us.

• Using induced subgraphs, the presence of a Grow edge prevents application of any
of the old rules. The old rules must be replicated, to enumerate all possible
permutations of Grow edges that might occur in the gl

host area.
• Using non-induced subgraphs, the old graph-rewrite rules continue to apply, but

they perform implicit Grow-edge deletion. Rewrite rules apply whether or not a
Grow-edge is present, but if a Grow-edge was present before rule application, it is
no longer present after rule application.

These problems are independent of the embedding mechanism, arising similarly in all
gluing and embedding models that use removal of gl

host during the rewriting step.
Improved semantics can be defined by using non-induced subgraph matching and
avoiding node deletion where possible. (If gl

host and gr
host contain corresponding nodes,

then these nodes are identified, rather than removing the gl
host node and replacing it with

the gr
host node.) Such incomplete removal of non-induced subgraphs is provided in the

definition of structured graph rewriting [KrRo90], and in the current PROGRES
language [Schü91, p. 652]. (These semantics evolved over time: an earlier PROGRES
reference describes the removal from host-graph of the complete subgraph corresponding
to the non-induced gl

host [EnLS87, p. 192]). Many graph-rewriting papers give scant
mention of their choice to use induced or non-induced subgraph matching. This issue
is important both theoretically and practically.

14

B

C

A

2

1

3

B

C

A

2'

1'

3'

→

(a)
B

C

A

C

B

C

A

C

(b) (c)

Figure 6 Induced versus non-induced subgraphs. Rewrite rule (a) is applied to the host
graph (b). If an induced gl

host is required, the isomorphism test fails and the rewrite rule
cannot be applied. If non-induced subgraph matching is used, a suitable gl

host is found and
replaced, resulting in the new host graph (c). (We use the standard removal and replacement
of gl

host, as in the LEARRE steps: Locate, establish Embedding Area, Remove, Replace,
Embed [Roze87].) Note the implicit edge-deletion in (c): the edge from the C-labeled node to
the B-labeled node is removed in host-graph, an effect that may or may not have been
anticipated by the author of rewrite-rule (a).

10. Mrs. Maggraphen: Can hierarchical graphs be rewritten?
Hierarchical host-graph structures arise naturally in many applications. In a strict

definition of hierarchical graphs, all edges must connect siblings, or connect a parent
and a child node. However, many practical problems cannot be modeled without
additional edges that cross the hierarchy, for example to connect “cousin” nodes. The
presence of such hierarchy-crossing edges greatly complicates the construction of tools
for hierarchical graph rewriting. Various notations for hierarchical graph structures are
described in [Hare88] [SiGJ93]. Hierarchical structure assists in the display of a large
graph. Zoom-in and zoom-out operations reduce the graph to manageable proportions
for viewing, or delimit selected portions of the graph for processing.

It is possible to consider hierarchical graphs as merely a notational device
pertaining to graph display: a hierarchically-structured graph can easily be translated
into a flat graph, with the addition of special edges to indicate parent/child relationships
in the hierarchy. However, a full implementation of hierarchical-graph rewriting must
give many special considerations to these edges. There is significant interest in the
topic of hierarchical graph rewriting. Relevant references include a chart-based parser
for hierarchical-graphs [MaKl92]; abstract graphs in a prototype algebraic-rewrite
environment [LöBe93]; graphs where node labels can be graphs themselves [Schn93];
flat host-graph structure with hierarchy-expressing rewriting rules used to zoom in and
out [EhHK92] and to manage and display a derivation [Hims94]; use of hierarchical
graphs in a formal approach to plan generation [ArJa94]; use of hierarchically
distributed graph transformations [Taen94].

15

11. Mr. Maggraphen: A lot of our C code performs graph inspections.
How can we translate this into graph-rewrite
rules?

The Maggraphens’ current software freely mixes graph-inspection operations with
graph-manipulation operations. Their graph inspection operations test local or global
host-graph properties; examples include searching for a short path between nodes, or
testing whether a graph is bipartite. The Maggraphens are concerned about the
feasibility of translating to a pure graph-rewriting language. It is true that some host-
graph inspection is performed during a graph-rewriting step (find gl

host, find embedding
edges, test the application condition). But these host-graph inspections accompany or
follow subgraph-isomorphism testing, making it clumsy and expensive to express
graph inspections that should be undertaken before the subgraph-isomorphism test.

More direct methods for expressing host-graph inspections are desirable. The
designers of PROGRES recognize this, providing a variety of graph-inspection
language constructs [ELNSS92]. Statically-declarable graph properties are defined in
the graph scheme; these include the class hierarchy for node labels and edge labels, as
well as restrictions on the source- and target-node-labels for edges with a particular edge
label. In addition to this static construct, a variety of dynamic graph-inspection
constructs are provided. General control structures direct the application of graph tests
and graph productions [ZüSc92]. A rule’s gl can be augmented with path constructs,
permitting complex, far-reaching examination of graph structure as part of the
localization of gl

host. Independent of rewrite-rule application, path descriptions can be
used to compute values for derived attributes. The applicability of a rewrite rule (or a
subprogram of rules) can be tested without executing it. Global on-going graph
inspection is proposed in [NaSc91]: global runtime conditions are used to state host-
graph conditions that should always (or never) hold.

In summary, practically-usable graph rewriting languages must provide general
facilities for graph inspection. Different language constructs may be suitable for
unordered, grammar-based, or ordered graph-rewriting environments.

12. Mrs. Maggraphen: What about our user-interface and image-
processing code? We want to leave that coded
in C.

Graph rewriting is a suitable formalism for expressing only part of the
Maggraphens’ computation. To encourage widespread use of graph rewriting, we need
convenient methods to combine graph rewriting with other styles of computation.
This is an interesting research topic. A few possible approaches include combining
graph rewriting with a blackboard architecture (with the host graph stored as part of the
blackboard); combining graph rewriting with methods for performing major
computations on attributes (where attributes can be complex entities such as tables or
lists or even other graphs); using graph rewriting with or on top of a standard
programming language (as is already being done with some ordered graph-rewriting
systems such as PROGRES [ZüSc92]).

13. The Maggraphens: Thanks for the information. We’ll
probably continue to use C...

Currently we cannot advise the Maggraphens to stake their financial future on
graph rewriting as their tool for product development. We hope that this situation will

16

change, so that in perhaps ten years time we could give different advice. Here’s what
we have to do to achieve this.

• Make it less difficult for an outsider to learn how to use graph rewriting in a
practical application. The Maggraphens’ experience mirrors our own: as we set out
to apply graph rewriting to diagram recognition [FaBl93] [GrBl95] [Fahm95], we
found it hard to figure out how to organize our computation. A careful reading of
the literature was only of limited help: we found extensive discussion of graph-
rewriting mechanisms, but little discussion of systems issues, and few examples of
significantly-large graph-rewriting systems. Currently, the graph-rewriting
literature appears confusing and uninviting to an outsider.

• Disseminate the graph-rewriting research/experience that is currently available.
Graph rewriting is an intuitive, widely appealing concept, and outsiders are
continually reinventing it. (Several attendees at Williamsburg invented graph
rewriting during the course of their research, only later to discover that there already
existed research on this subject, and thus found their way to the workshop. Other
reinventors of graph-rewriting never find us. This should not be happening for a
research community that has a decades-long history.) The profile of graph-
rewriting must be raised. One important goal is to have graph-rewriting included
in the standard undergraduate computing science curriculum. A few lectures’ worth
of material can be included in a data-structures or algorithms course, where graph-
representation techniques and graph-inspection algorithms are already taught.
Alternatively, graph grammars can be introduced in a formal languages class.

• Develop a better sense for which applications (or parts of applications) are suitable
for implementation via graph rewriting. (We found an enthusiastic atmosphere at
the Williamsburg conference: all sorts of computer-science applications were
eagerly characterized as "yes, yes, graph grammars would be a great way to solve
that problem".) We need to develop guidelines for identifying when graph
rewriting use is advisable, and we need to develop methods for integrating graph
rewriting into systems that use other styles of computation as well.

• Continue to develop and refine environments for graph rewriting. We are delighted
that the PROGRES environment (and other environments to follow) are
sufficiently mature to be generally usable. (When we began our diagram-
recognition work, we found that the [Bunk82a] software was not in a state to be
reused. Thus we had to create our own modest graph-rewriting environment; this
took time, and the poor quality of the executing environment hampered our
debugging and testing. We are happy that now, if we interest other colleagues in
graph rewriting, we can direct them to existing graph-rewriting environments!)

In summary, our current situation is this. We are very enthusiastic about graph
rewriting as a style of computation, and we are eager to convince other researchers to
use graph rewriting. However, when we do succeed in convincing someone to try
graph rewriting, we are left in the awkward position of being flooded with Maggraphen-
type questions, few of which we can answer satisfactorily. Let us continue to work
toward giving graph rewriting the widespread use it deserves.

References
[Ande77] R. Anderson, “Two Dimensional Mathematical Notation,” in Syntactic Pattern

Recognition, Applications, K. S. Fu editor, Springer 1977, pp. 147-177.
[ArJa94] O. Arnold and K. Jantke, “Therapy Plans as Hierarchically Structured Graphs,” in

[IWGG94], pp. 338-343.[BlFG95] D. Blostein, H. Fahmy, A. Grbavec, “Practical Use of

17

Graph Rewriting,” Technical Report No. 95-373, Computing and Information Science,
Queen’s University, Jan 1995.

[Bunk82a] H. Bunke, “Attributed Programmed Graph Grammars and Their Application to
Schematic Diagram Interpretation,” IEEE Pattern Analysis and Machine Intelligence,
Vol. 4, No. 6, Nov. 1982, pp. 574-582.

[Bunk82b] H. Bunke, “On the Generative Power of Sequential and Parallel Programmed
Graph Grammars,” Computing, Vol. 29, 1982, pp. 89-112.

[BuGT91] H. Bunke, T. Glauser, T. Tran, “An Efficient Implementation of Graph Grammars
Based on the RETE Matching Algorithm,” in [IWGG91], pp. 174-189.

[BuHa92] H. Bunke and B. Haller, “Syntactic Analysis of Context-Free Plex Languages for
Pattern Recognition,” in Structured Document Image Analysis, Eds. Baird, Bunke,
Yamamoto, Springer 1992, pp. 500-519.

[CoTV93] S. Collin, K. Tombre, P. Vaxiviere, “Don’t Tell Mom I’m Doing Document
Analysis; She Believes I’m in the Computer Vision Field,” Proc. Second Intl. Conf. on
Document Analysis and Recognition, Tsukuba, Japan, Oct. 1993, pp. 619-622.

[DoTo88] J. Dolado, F. Torrealdea, “Formal Manipulation of Forrester Diagrams by Graph
Grammars,” IEEE Trans. Systems, Man and Cybernetics 18(6), pp. 981-996, Nov 1988.

[EgPM92] J. Egar, A. Puerta, M. Musen, “Automated Interpretation of Diagrams for
Specification of Medical Protocols,” AAAI Symposium: Reasoning with Diagrammatic
Representations, Stanford University, March 1992, p 189-192.

[EhKr80] H. Ehrig and H. Kreowski, “Applications of Graph Grammar Theory to Consis-
tency, Synchronization, and Scheduling in Data Base Systems,” Information Systems,
Vol. 5, pp. 225-238, 1980.

[EhHK92] H. Ehrig, A. Habel, H. Kreowski, “Introduction to Graph Grammars with
Applications to Semantic Networks,” International Journal of Computers and
Mathematical Applications, Vol. 23, No 6-9, pp. 557-572, 1992.

[EhEn94] H. Ehrig and G. Engels, “Pragmatic and Semantic Aspects of a Module Concept for
Graph Transformation Systems,” in [IWGG94], pp. 157-168.

[EnLS87] G. Engels, C. Lewerentz, W. Schafer, “Graph Grammar Engineering: A Software
Specification Method,” in [IWGG87], pp. 186-201.

[ELNSS92] G. Engels, C. Lewerentz, M. Nagl, W. Schafer, A. Schürr, “Building Integrated
Software Development Environments Part 1: Tool Specification,” ACM Trans. Software
Engineering and Methodology, Vol. 1, No. 2, Apr. 1992, pp. 135-167.

[FaBl93] H. Fahmy and D. Blostein, “A Graph Grammar Programming Style for Recognition
of Music Notation,” Machine Vision and Applications, Vol 6, No 2, pp. 83-99, 1993.

[Fahm95] H. Fahmy, “Reasoning in the Presence of Uncertainty via Graph Rewriting,”
Ph.D. Thesis, Computing and Information Science, Queen’s University, March1995.

[Fu82] K. S. Fu, Syntactic Pattern Recognition and Applications, Prentice Hall 1982.
[Gött83] H. Göttler, “Attribute Graph Grammars for Graphics,” in [IWGG83], pp. 130-142.
[Gött87] H. Göttler, “Graph Grammars and Diagram Editing,” in [IWGG87], pp. 216-231.
[GöGN91] H. Göttler, J. Gunther, G. Nieskens, “Use Graph Grammars to Design CAD-

Systems!” in [IWGG91], pp. 396-410.
[Gött92] H. Göttler, “Diagram Editors = Graphs + Attributes + Graph Grammars,”

International Journal of Man-Machine Studies, Vol 37, No 4, Oct. 1992, pp. 481-
502.[GöHi94] H. Göttler and B. Himmelreich, “Modeling of Transactions in Object-
Oriented Databases by Two-level Graph Productions,” in [IWGG94], pp. 151-
156.[GrBl95] A. Grbavec and D. Blostein, “Mathematics Recognition Using Graph
Rewriting,” Third International Conference on Document Analysis and Recognition,
Montreal, Canada, August 1995, pp. 417-421.

[Hare88] D. Harel, “On Visual Formalisms,” Communications of the ACM, Vol 31, No 5 ,
pp. 514-530, May 1988.

[HeSa86] T. Henderson and A. Samal, “Shape Grammar Compilers,” Pattern Recognition,
Vol 19, No 4, pp. 279-288, 1986.

[Hims91] M. Himsolt, “GraphEd: An Interactive Tool for Developing Graph Grammars,” in
[IWGG91], pp. 61-65.

[Hims94] M. Himsolt, “Hierarchical Graphs for Graph Grammars,” in [IWGG94], pp. 67-70.
[IWGG79] Intl. Workshop on Graph Grammars and Their Application to Computer Science

and Biology, LNCS Vol . 73, V. Claus, H. Ehrig, G. Rozenberg Eds, Springer, 1979.
[IWGG83] Second Intl. Workshop on Graph Grammars and Their Application to Computer

Science, LNCS Vol. 153, H. Ehrig, M. Nagl, G. Rozenberg Eds, Springer, 1983.
[IWGG87] Third Intl. Workshop on Graph Grammars and Their Application to Computer

Science, LNCS Vol. 291, Ehrig, Nagl, Rozenberg, Rosenfeld Eds, Springer, 1987.

18

[IWGG91] Fourth Intl. Workshop on Graph Grammars and Their Application to Computer
Science, LNCS Vol. 532, H. Ehrig, H. Kreowski, G. Rozenberg Eds, Springer, 1991.

[IWGG94] Pre-proceedings of the Fifth Intl. Workshop on Graph Grammars and Their
Application to Computer Science, Williamsburg, VA, Nov. 1994. Full versions of
selected papers appear in this volume.

[KaLG91] S. Kaplan, J. Loyall, S. Goering, “Specifying Concurrent Languages and Systems
with ∆-grammars,” in [IWGG91], pp. 475-489.

[Kaul83] M. Kaul, “Parsing of Graphs in Linear Time,” in [IWGG83], pp. 206-218.
[Klau94] C. Klauck, “Heuristic Driven Chart-Parsing,” in [IWGG94], pp. 107-113.
[KrRo90] H.-J. Kreowski, G. Rozenberg, “On Structured Graph Grammars, I, II” Information

Sciences, Vol. 52, 1990, pp. 185-210, 210-246.
[LiFu86] W. Lin and K.S. Fu, “A Syntactic Approach to Three-Dimensional Object Recogni-

tion,” IEEE Trans. Systems Man and Cybernetics, 16(3), May 1986, pp. 405-422.
[LöBe93] M. Löwe, M. Beyer, “AGG -- An Implementation of Algebraic Graph Rewriting,”

Fifth Intl. Conf. on Rewriting Techniques and Applications, Montreal, Canada, June
1993, in LNCS 690, Springer, pp. 451-456.

[LoKa92] J. Loyall and S. Kaplan, “Visual Concurrent Programming with Delta-Grammars,”
Journal of Visual Languages and Computing, Vol 3, 1992, pp. 107-133.

[MaKl92] J. Mauss and C. Klauck, “A Heuristic Driven Parser Based on Graph Grammars for
Feature Recognition in CIM,” Advances in Structural and Syntactic Pattern Recognition,
Ed. H. Bunke, World Scientific, 1992, pp. 611-620.

[NaSc91] M. Nagl, A. Schürr, “A Specification Environment for Graph Grammars,” in
[IWGG91], pp. 599-609.

[Panel91] “Panel Discussion: The Use of Graph Grammars in Applications,” in [IWGG91],
pp. 41-60.

[Pfei90] J. Pfeiffer, “Using Graph Grammars for Data Structure Manipulation,” Proc. 1990
IEEE Workshop on Visual Languages, pp. 42-47.

[ReSc94] J. Rekers and A. Schürr, “Parsing for Context-Sensitive Graph Grammars,” in
[IWGG94], pp. 89-94.

[Roze87] G. Rozenberg, "An Introduction to the NLC Way of Rewriting Graphs," in
[IWGG87], pp. 55-70.

[Schü91] A. Schürr, “PROGRESS: A VHL-Language Based on Graph Grammars," in
[IWGG91], pp. 641-659.

[Schn93] H. Schneider, “On categorical graph grammars integrating structural
transformations and operations on labels,” Theoretical Computer Science, Vol. 109,
1993, pp. 257-275.

[SiGJ93] G. Sindre, B. Gulla, H. Jokstad, “Onion Graphs: Aesthetics and Layout,” Proc.
1993 IEEE Symposium on Visual Languages, Bergen, Norway, Aug. 1993, pp. 287-291.

[Strz90] T. Strzalkowski, “Reversible Logic Grammars for Natural Language Parsing and
Generation,” Canadian Computational Intelligence Journal, 6(3), pp. 145-171, 1990.

[Taen94] G. Taentzer, “Hierarchically Distributed Graph Transformations,” in [IWGG94],
pp. 430-435.[ToKa94] W. Tolone and S. Kaplan, “A Semantic Definition for Introspect
using ∆-Grammars,” in [IWGG94], pp. 418-423.[ZüSc92] A. Zündorf and A. Schürr,
“Nondeterministic Control Structures for Graph Rewriting Systems,” Proc 17th Intl.
Workshop on Graph-Theoretic Concepts in Computer Science WG91, LNCS Vol 570,
Springer Verlag, 1992.

[Zünd94] A. Zündorf, “Graph Pattern Matching in PROGRES,” in [IWGG94], pp. 174-178.

