
A Framework for Migrating Web Applications to
Web Services

Asil A. Almonaies, Manar H. Alalfi, James R. Cordy, and Thomas R. Dean

School of Computing, Queens University
Kingston, Ontario, Canada

{asil,alalfi,cordy,dean}@cs.queensu.ca

Abstract. In this paper, we present a framework for semi-automatically migrat-
ing monolithic legacy web applications to service oriented architecture (SOA)
by separating potentially reusable features as web services. Software design re-
covery and source transformation techniques are used to automatically analyze
and reprogram web application code to migrate existing web-based systems to
support inter-business services and interactions. Such modernization helps make
web applications more flexible, allowing them to more easily integrate function-
ality with other systems and respond to rapidly changing business needs. While
the problem of migrating other kinds of legacy software systems to an SOA en-
vironment has been well studied in the literature, approaches to migrating legacy
web applications to web services are lacking. We demonstrate our framework on
the analysis and automated restructuring of an existing web application to extract
and migrate integrated internal features to independent, reusable web services.

1 Introduction
Service Oriented Architecture (SOA) is an increasingly important software architecture,
designed to flexibly interconnect software components in response to rapid changes in
the business environment. In SOA, applications are split into separate software services
that can be maintained independently and easily reused. In order to provide the ad-
vantages of SOA in the context of the world wide web, Web Services are used as an
enabling technology, allowing web-based business functionalities to interconnect in an
object-model-neutral manner.

At present the vast majority of production web applications use a monolithic stand-
alone software style. These applications are designed largely without clear modularity,
which makes their maintenance and enhancement in response to rapidly changing busi-
ness requirements a difficult task. Rather than re-implement the business functionality
of these applications as services from scratch for the new world of interoperation and
reuse, web providers would prefer to preserve their investment by migrating their exist-
ing web application functionality to web services. These dynamic legacy web applica-
tions are simply too important to be discarded, and thus they must be reused.

Several modernization approaches to move legacy systems to SOA environments
have been described in the literature. However, to our knowledge only a few research
studies have attempted to address the problem of automatically moving monolithic
legacy dynamic web applications to SOA. Moreover, the work that is done in this area
[1, 2, 3] is very general, discussing the benefits leveraging existing web applications in
moving to web services, without proposing any practical framework for actually imple-
menting the change.

2 Asil A. Almonaies, Manar H. Alalfi, James R. Cordy, and Thomas R. Dean

The nature of monolithic dynamic web applications, often with mixed paradigms
and multi-lingual code, makes analysis and refactoring for the purpose of migration
to SOA a challenging and error-prone problem. Automation of the migration process
reduces human intervention, which reduces the time and cost and increases the consis-
tency of the migrated code.

In this paper we present a framework and tool set that largely automates the migra-
tion from monolithic web applications to SOA. Software design recovery and source
transformation techniques are used to assist in automating the migration from legacy
web applications to service-oriented web services. The result can be considered to be a
service-oriented web application that implements the endpoints of a Web Service. The
framework can also be used to combine different sets of services from two or more dif-
ferent web applications to construct a new web service application which behaves like
the two original applications together.

The contributions of this paper are:

– A general framework using an iterative process of incremental steps to analyze and
reprogram existing web applications to web services based on the Service Compo-
nent Architecture (SCA) web services standard.

– An automatic extraction process to extract and separate identified business features
in dynamically-typed scripting languages as object-oriented classes.

– An automatic process for inferring the types of parameter values in dynamically–
typed scripting languages using instrumentation and coverage testing.

– An automatic process for converting an object-oriented class into an SCA service
component.

– A prototype set of tools using source analysis and transformation to automate the
reprogramming of web applications written in PHP to extract and separate identi-
fied business features as web services.

– A demonstration of the framework and tool set in extracting web services from
SCARF, a monolithic web application for a conference and research paper discus-
sion forum, and automatically reprogramming it to use these services.

2 A Web Application to SOA Migration Framework
Our proposed framework uses a new approach to the problem of legacy system migra-
tion to service-oriented architecture. It is one of the first approaches to explore the area
of moving a monolithic web application to SOA with significant levels of automation.
The proposed framework (Figure 1) consists of two main steps, Service Identification
and Service Migration, to produce a new application using web services.

2.1 Service Identification
While our work concentrates on the service migration aspect of the problem, one of
the main challenges in modernizing a web legacy system is the identification of poten-
tial service functionality that may have business value. Our approach does not attempt
to solve the identification of services, rather we leverage the results of other research
such as the work done by Asuncion et al.[4], which uses goal-based, model-driven and
service-oriented approaches to identify business rules in the application.

A Framework for Migrating Web Applications to Web Services 3

!!

!
!

!
!

!!

!
! !

!

!!

Dynamic
Web application

"#$%&%#'()*(+,&-())
.%($/0-#/1$)

"#$%&%#'()*(+,&-())
*(2#+#/1$)3)4&5+#/1$))

Adapted
Web application
Using Services

)

!
!

!
!

!
!

"#$!%&'(!%)*&$!+,!-#./($&!0!

Fig. 1. A Migration Framework

In our framework, the output of the service identification step is a marked-up version
of the web application source code in which sections of code with the desired business
functionality have been identified as the operations of a candidate service. This tagged
candidate service is then the input to our automated migration process.

In this paper we carried out the identification process manually. Based on the func-
tionalities that we wanted to extract from the adapted web application, we identified
each potential operation of the candidate service using XML markup of the application
source. In our identification notation, each candidate service operation is marked up us-
ing a <service function = function-name> tag, where function-name is a user-suggested
name for the candidate service operation (Figure 2).

2.2 Service Separation & Migration

Candidate service migration is the process of separating each identified candidate ser-
vice into a separate class , extracting it from the original application code, converting the
created class into a separate independent service, and adapting the original application
code to use the separated service. Once extracted and migrated to a separate service, the
extracted service is used by the adapted original application as a client, and can also be
easily used by other web applications.

Legacy web applications are generally implemented using scripting languages such
as PHP [5] or Python [6]. These languages are dynamically typed, reflexive and sup-
port dynamic changes to the code. The nature of monolithic dynamic web applications,
often with mixed programming paradigms, makes the analysis and refactoring of web
application source code challenging. Thus the process of separation & migration of
candidate services is time consuming, technically complex and error-prone.

While there are a number of different approaches to migrating various kinds of
legacy software systems to a service oriented architecture in the literature [7, 8, 9],
approaches to migrating web applications to web services are lacking [10]. This lack
of other approaches, and the clear need for automation to assist in web application
migration is the focus of the work of this paper. The concrete goal of our research is
to to automate the separation and migration of identified candidate services in PHP-
based web applications to web services using IBM’s Service Component Architecture
(SCA) standard. While our work concentrates on PHP in this paper, the same process
and strategy can be easily adapted to other web application languages and technologies.

4 Asil A. Almonaies, Manar H. Alalfi, James R. Cordy, and Thomas R. Dean

<?php
include ("welcome.html");

$fname = "John";

<service function = Reverse>
$name = strrev ($fname);

</service>

echo "My name is".$name;
?>

Fig. 2. Example Marked Candidate Service Operation

3 Automating Service Migration
Our process for automating service separation and migration consists of several steps,
each implemented using a TXL [11] source transformation of the PHP web application
code. The five steps of our process are (Figure 3) :

1. Candidate Service Refactoring
2. Candidate Service Separation
3. Parameter Type Inference
4. Service Component Conversion
5. Database Refactoring

The following sections describe each of these steps in detail.

3.1 Candidate Service Refactoring
The input for the first step is the marked up source code of the web application which
identifies PHP code sections as potential operations of the candidate service. In the
simple example of Figure 2, a PHP code section is marked as the candidate service
operation "Reverse".

The refactoring step automatically creates a PHP function for each of the marked
up candidate code sections, and wraps them in a new class for the candidate service.
Parameters and results of the functions are inferred from the dependencies of the code
sections on their context, and the original code sections are replaced by parameterized
calls to the functions of the new candidate service class.

When this step is complete, the application has been refactored to separate the orig-
inal marked code sections into functions of the separate class (Figure 4). The user pro-
vides a name for the new class, in this case "Example".

3.2 Candidate Service Separation
In the next step, we automatically separate the new candidate service class into a sep-
arate PHP class file and generate the appropriate PHP code necessary for the original
program to use it, including include directives for the separated class file and creation
of an instance object for use in the original code.

As part of the separation, we create a constructor class for each of the operations
wrapped in class, called the return class, which acts as a dictionary to contain the re-
turned values of the operation. The results of the candidate service separation step on
our simple example candidate class are shown in Figure 5.

A Framework for Migrating Web Applications to Web Services 5

Fig. 3. Steps of our Automated Process for Service Migration

class Example {
function Reverse ($name, $fname) {

$name = strrev ($fname);
return new Reverse_return ($name);

}
}

Fig. 4. Example Class Generated by the Refactoring Step

3.3 Parameter Type Inference

Like most web application languages, PHP is a dynamically typed language, and types
of function parameters are not normally specified. A parameter simply has whatever
type it takes on at run time. Parameters to service operations, by contrast, must be
specified as part of the service description.

Thus in this step we first instrument each function of the refactored and separated
candidate service class to dynamically capture parameter types, and then run the instru-
mented application to cover execution of every candidate service operation function.
The instrumentation stores in a file a table of each function annotated with the types of
the parameters it receives when actually run. In some cases, parameters end up with a
NULL type, if the corresponding variable has not been set when the function is called.
In this case we delete the NULL values as they do not affect the output.

The type table file is then used to explicitly annotate the parameters of the service
operation functions of the candidate service class with their expected types. These pa-
rameter types are required in the Service Component Conversion step (Section 3.4) both
for creating the Web Services Description Language (WSDL) service description of the
new service, and for creating SCA parameter annotations for the operations of the new
service. The result of the parameter type inference step is a fully typed version of the
separated candidate class file (Figure 6).

6 Asil A. Almonaies, Manar H. Alalfi, James R. Cordy, and Thomas R. Dean

<?php
include ("welcome.html");

include_once "Example_return.php";
include_once "Example.php";
$Example_obj = new Example ();

$fname = "John";

$Reverse_return_obj = $Example_obj -> Reverse ($name, $fname);
$name = $Reverse_return_obj -> name;

echo "My name is".$name;
?>

(a) Refactored Original Code after Candidate Service Class Separation

<?php

include_once "Example_return.php";

class Example {
function Reverse ($name, $fname) {

$name = strrev ($fname);
return new Reverse_return ($name);

}
}
?>

(b) Separated Candidate Service Class

<?php
class Reverse_return {

public $name;
public function __construct ($name) {

$this -> name = $name;
}

}
?>

(c) Return Value Constructor Class for Reverse Operation of Separated Candidate Service Class

Fig. 5. Example Refactored and Separated Candidate Service Class

<?php
include_once "Example_return.php";

class Example {
function Reverse (NULL $name, string $fname) {

$name = strrev ($fname);
return new Reverse_return($name);

}
}
?>

Fig. 6. Example Refactored and Separated Service Class after Type Inference

3.4 Service Component Conversion

After inferring parameter types of the separated candidate service class operation func-
tions, we are ready to reprogram the class into a real service component. In this step
we convert the separated candidate service class file into an SCA service component,
by adding the required SCA annotations to the class and each of its operation functions
specifying the name, number and types of the expected service operation message pa-
rameters. As part of this conversion, the Web Service Description Language (WSDL)
service description file is created automatically by the SCA technology.

In order to create an SCA component several steps are required. SCA service type
annotations must be added to each of the service operation functions of the candidate
service class to specify the types of parameters and return values of the operation. The

A Framework for Migrating Web Applications to Web Services 7

<?php
include ("welcome.html");

include_once "Example_return.php";
include_once ("SCA/SCA.php");
$Example_obj = SCA :: getService ("Example.wsdl");

$fname = "John";

$Reverse_return_objStr = $Example_obj -> Reverse ($name, $fname);
$Reverse_return_obj = unserialize ($Reverse_return_objStr);
$name = $Reverse_return_obj -> name;

echo "My name is".$name;
?>

(a) Converted Original Application as SCA Client

<?php
include_once "Example_return.php";
include "SCA/SCA.php";

/**
* @service
* @binding.soap
*/

class Example {
/**

* @param string $fname
* @return string
*/

function Reverse (string $fname) {
$name = strrev ($fname);
return serialize (new Reverse_return ($name));

}
}
?>

(b) Converted Candidate Service Class as SCA Service

Fig. 7. Example Converted to a Web Service-based Application

SCA interface and SCA service annotations must be generated for the candidate service
class to specify the service and its service binding (in the case of our conversions, the
SOAP messaging protocol). And finally, the original adapted web application must be
converted to a service client of the WSDL service description and SCA protocol.

Figure 7 shows the result of applying these transformations to the candidate ser-
vice class file and refactored original application to create an SCA-based client/server
relationship using the new web service.

3.5 Database Refactoring
In the final step of our migration, the original application database is refactored to sep-
arate those tables used only by the new separated service into a separate database, and
remove them from the original application database. This allows the new web service
to be used by other applications independently of the original. In our current implemen-
tation of the framework, this final step is done manually when required.

4 A Case Study : SCARF
In the previous sections we have outlined our framework for automatic migration of
web applications to SOA using a sequence of source transformations that take identi-
fied potential service operations in the application code to separate reusable SCA web
services. Our running example has demonstrated the application of the process to a
small but representative toy web application.

8 Asil A. Almonaies, Manar H. Alalfi, James R. Cordy, and Thomas R. Dean

Thus far we have used our framework on two real web applications, the Moodle
course management system [12], a large production web application used by thousands
of students and instructors worldwide, and SCARF, the Stanford conference and re-
search forum, a research discussion forum application [13]. Due to space limitations,
in this paper we only show the use of our framework in separating and migrating the
paper management functionality of SCARF to a web service.

4.1 The SCARF Paper Management Subsystem
SCARF [13] is a PHP-based web application designed to help researchers and confer-
ence administrators create and maintain discussion forums for their research papers. In
SCARF, papers are uploaded and stored in a database where users can view, comment
and edit them, as well as organize them into sessions. SCARF is intended to support
interactive conferences such as SIGCOMM, for which it was originally developed.

4.2 Step 1: Paper Management Service Identification
Our plan is to identify and separate a new web service for the research paper manage-
ment aspects of SCARF, separating it from the user interface code of the web applica-
tion so that it can be accessed and reused by other applications. The paper management
system in SCARF supports several operations. For example, users can download a spe-
cific paper, edit the content of a paper, and add a new paper to the forum.

We begin by analyzing the SCARF source to identify the functionalities related to
paper management. The business logic of the paper management functionality is spread
over five PHP pages:

– editpaper.php: Logic to enable an authenticated user to add a new paper to the
forum or edit the information of existing papers.

– showpaper.php: Logic to access specific paper details, such as name, authors, ab-
stract, comments, the paper document and auxiliary files.

– showsession.php: Logic to show all papers available in a specific session with in-
formation about them.

– getpaper.php: Logic to download a paper.
– getfile.php: Logic to download an auxiliary file associated with a paper.

Each of these pages contains sections of code that provide particular discrete opera-
tions that we can identify as part of our candidate paper management service class,
interspersed with user interface code to present and interact with the page. Figure 8
shows the tagged candidate service operation code sections for the paper management
functionality of SCARF in the editpaper.php page.

4.3 Step 2: Refactoring
While candidate service operations are often contained in a single PHP source file, in
the case of the SCARF paper management functionality, the code is spread over several
different PHP source of the application. To handle this we use our refactoring transfor-
mation to generate several candidate service classes for the operations, one from each
PHP page, and merge the results into a single unified candidate service class (Figure 9)
before conversion to an SCA service.

A Framework for Migrating Web Applications to Web Services 9

include_once("functions.php");
<markIncludes/>
include_once("header.php");
////////// (... 10 lines elided ...) //////////
if (isset($_GET[’paper_id’])) {

$id = (int) $_GET[’paper_id’];
<service function=getPaperDetails>
$result = query("SELECT title, abstract, session_id, pdf, pdfname FROM papers WHERE paper_id=’".$id."’");
$title = $result[0]["title"];
$abstract = $result[0]["abstract"];
$session_id = $result[0]["session_id"];
$pdf = $result[0]["pdf"];
$pdfname = $result[0]["pdfname"];
$result = query("SELECT user_id FROM authors WHERE paper_id=’".$id."’ ORDER BY ‘order‘");
$authors = Array();
if ($result){

foreach($result as $row) {
$authors[] = $row;

}
}
</service>

}
////////// (... 60 lines elided ...) //////////

include("editform3.php");

<service function=getFileEdit>
$result = query("SELECT name, data FROM files WHERE paper_id=’".$id."’");
</service>

////////// (... 75 lines elided ...) //////////
if (!isset($_POST[’paper_id’])) {

// new paper
<service function=addPaper>
$row = query ("SELECT MAX(‘order‘) as max FROM ‘papers‘ WHERE session_id = ’".$session."’");
$order = (int) $row[0] + 1;
query ("INSERT INTO papers (title, abstract, pdf, pdfname, session_id, ‘order‘) VALUES (’".$title."’, ’".$

abstract."’, ’".$pdf."’, ’".$pdfname."’, ’".$session."’, ’".$order."’)");
$row = query ("SELECT paper_id FROM papers WHERE title=’".$title."’ AND abstract=’".$abstract."’ AND pdfname

=’".$pdfname."’ AND session_id=’".$session."’ ORDER BY paper_id DESC");
$id = $row[0][’paper_id’];;
</service>

} else {
// updated paper paper

if (!empty($filename)) {
$pdfSetString = "pdf=’$pdf’, pdfname=’$pdfname’,";

} else {
$pdfSetString = "";

}
<service function=updatePaper>
query("UPDATE papers SET title=’".$title."’, abstract=’".$abstract."’, ".$pdfSetString." session_id=’".$

session."’ WHERE paper_id=’".$id."’");
$id = (int) $_POST[’paper_id’];
query("DELETE FROM authors WHERE paper_id=’".$id."’");
</service>

}
////////// (... 50 lines elided ...) //////////

$num = 0;
<service function=addAuthors>
foreach ($_POST[’authors’] as $author) {

if (! empty($author)) {
query ("INSERT INTO authors (‘paper_id‘, ‘user_id‘, ‘order‘) VALUES (’".$id."’, ’" .

mysql_real_escape_string($author) . "’, ’".$num."’)");
}
$num++;

}
</service>
if (!isset($_POST[’paper_id’])) {

print "Paper added successfully";
} else {

print "Paper updated successfully";
}
print ". View the paper";

}
include_once("footer.php");
?>

Fig. 8. Paper Management Operation Markup in the SCARF editpaper.php page

We run our refactoring transformation in turn on each of the five tagged source
pages, generating a new separate candidate service class for each one, while adapting
the original page to use the new service. By specifying to the refactoring process that
the new candidate service classes should each have the same name, in this case papers,
we prepare them for merging.

10 Asil A. Almonaies, Manar H. Alalfi, James R. Cordy, and Thomas R. Dean

!"#$%&'&()*+,&-).)/+-+.0&
1231410+-51&6+3*)/+1&

").787)0+&
!+,98:+1&

$+;):0<,8./&

").787)0+&&
!+,98:+&"=)11+1&

>+,/8./&

+780*)*+,?&
@&

1@<6*)*+,?&
@&

/+0*)*+,?&
@&

/+A8=+?&
@&

1@<61+118<.?&
@&

").787)0+&1+,98:+&&
:=)11+1&

&&BCD& &&BCD&

&&BCD& &&BCD&&&BCD&

>+,/+7&!+,98:+&"=)11&
E()*+,1F&&&&&&&

&

&&&&&&BCD&&

Fig. 9. Generating and Merging Candidate Service Operations from Multiple Application Pages

When the refactoring step is complete, we have five generated candidate service
classes, each with the same name, and each with its own set of candidate service oper-
ations. We then merge the candidate service operation functions from the five different
classes into one single class file containing all of the candidate service operations, as
shown in Figure 9. If the different generated candidate service classes have two opera-
tions with the same name and functionality, then we merge them by hand into a single
operation function. If their functionality is different, then we must rename one of them
and its corresponding calls in the adapted page file.

As part of the refactoring transformation, the results required by each candidate
service operation are analyzed and a result value class generated for each candidate
service operation. These classes do not require merging since each is a unique separate
class, but the files containing them are merged into one, simply by concatenating them.

4.4 Step 3: Type Inference
Once the generated candidate service classes for each page have been merged into a sin-
gle merged candidate service class, the remaining steps of the process simply proceed
as for a single page. We use the the dynamic type inference technique of Section 3.3 to
infer the types of the operation parameters of the new merged candidate service class
by instrumenting and running the class with the adapted application pages to gather and
store dynamic type information, and then use the type merging transformation to add
the inferred types to the merged candidate service class operation functions.

Figure 10 shows the merged SCARF paper management candidate service after the
instrumentation transformation, with instrumentation code highlighted. This temporary
instrumented version of the merged candidate service class is exercised by running
the SCARF application with the adapted application pages, exploring all of the paper
management related links from the SCARF user interface until all of the candidate
service operation functions have been called at least once.

The output of this step is an instrumentation file containing type signatures for all of
the parameters of all fourteen of the candidate service operation functions (Figure 11),
which are then merged into the candidate service class using the typing transformation
described in Section 3.3 to yield the fully typed merged candidate service class.

4.5 Step 4: Conversion to SCA
In the final stage of the automated migration, conversion to an SCA service component,
we use the transformations of Section 3.4 to turn the SCARF candidate service class
into an SCA-based web service, and modify the pages of the adapted SCARF web
application to use the new service as a client.

A Framework for Migrating Web Applications to Web Services 11

<?php
include_once ("functions.php");
include_once "papers_return.php";

class papers {
function addAuthors ($_POST, $author, $id, $num) {

$FileHandle = fopen ("/tmp/papers.merge.php", ’a’);
fwrite ($FileHandle, "class papers{\n function addAuthors(");
fwrite ($FileHandle, gettype ($_POST).’ $_POST’);
fwrite ($FileHandle, ",");
fwrite ($FileHandle, gettype ($author).’ $author’);
fwrite ($FileHandle, ",");
fwrite ($FileHandle, gettype ($id).’ $id’);
fwrite ($FileHandle, ",");
fwrite ($FileHandle, gettype ($num).’ $num’);
fwrite ($FileHandle, ") {\n");
fwrite ($FileHandle, " }\n}\n");
fclose ($FileHandle);
foreach ($_POST [’authors’] as $author) {

if (! empty ($author)) {
query ("INSERT INTO authors (‘paper_id‘, ‘user_id‘, ‘order‘) VALUES (’".$id."’, ’".

mysql_real_escape_string ($author)."’, ’".$num."’)");
}
$num ++;

}
return new addAuthors_return ();

}

function updateFile ($id, $oldname, $name, $ext, $type, $data) {
$FileHandle = fopen ("/tmp/papers.merge.php", ’a’);
fwrite ($FileHandle, "class papers{\n function updateFile(");
fwrite ($FileHandle, gettype ($id).’ $id’);
fwrite ($FileHandle, ",");
fwrite ($FileHandle, gettype ($oldname).’ $oldname’);
fwrite ($FileHandle, ",");
fwrite ($FileHandle, gettype ($name).’ $name’);
fwrite ($FileHandle, ",");
fwrite ($FileHandle, gettype ($ext).’ $ext’);
fwrite ($FileHandle, ",");
fwrite ($FileHandle, gettype ($type).’ $type’);
fwrite ($FileHandle, ",");
fwrite ($FileHandle, gettype ($data).’ $data’);
fwrite ($FileHandle, ") {\n");
fwrite ($FileHandle, " }\n}\n");
fclose ($FileHandle);
query ("DELETE FROM files WHERE paper_id=’".$id."’ AND name=’".$oldname."’");
query ("INSERT INTO files (paper_id, name, ext, type, data) VALUES (’".$id."$’, ’".$name."’, ’".$ext."’,

’".$type."’, ’".$data."’)");
return new updateFile_return ();

}

////////// (12 more instrumented candidate service operation functions) //////////
}
?>

Fig. 10. Instrumented Merged Candidate Service Class for SCARF Paper Management

1. The typed candidate service class is automatically transformed to remove NULL
parameters, to insert code to unserialize parameters that are of type object or array,
and to serialize the result object of each operation.

2. The SCA annotation transformation of Section 3.4 is applied to the serialized candi-
date service class to yield an SCA service component. We add an include statement
for the SCA library, and SCA annotations for the class and methods. These include
@service and @binding.soap annotations for the class, and parameter and result
type annotations for each operation function. This enables the class as a service.

3. Invoking the converted service class using the SCA WSDL generation URL http :
//hostname/path/papers.php?wsdl causes the SCA platform to generate the
WSDL service description for the new service from the SCA annotations.

4. In the final transformation, the adapted source pages of the SCARF web application
are converted to be an SCA client of the new web service. We add the include
statement for the SCA library, create an instance of the proxy object for the service,
and update each service operation call to use it.

12 Asil A. Almonaies, Manar H. Alalfi, James R. Cordy, and Thomas R. Dean

<?php
class papers{
function getPaperDetails(array $result,integer $id,string $title,string $abstract,NULL $session_id,string $pdf,

string $pdfname,NULL $authors,array $row) { }
function getFileEdit(array $result,integer $id) { }
function updatePaper2(string $newname,integer $id,string $oldname) { }
function addPaper(array $row,integer $session,NULL $order,string $title,string $abstract,string $pdf,string $

pdfname,integer $id) { }
function updateFile(string $id,string $oldname,string $name,string $ext,string $type,string $data) { }
function updatePaper(string $title,string $abstract,string $pdfSetString,integer $session,integer $id,array $

_POST) { }
function deletePaper(integer $id,string $oldname) { }
function addAuthors(array $_POST,NULL $author,integer $id,integer $num) { }
function getFile(NULL $id,array $_GET,NULL $name,NULL $result) { }
function getpaper(NULL $id,array $_GET,NULL $result) { }
function getPaperAttribs(integer $id,array $_GET,array $result,NULL $title,NULL $abstract) { }
function getFileInfo(NULL $result2,string $id) { }
function paperTitle(NULL $result2,array $row) { }
function paperAuthor(array $result3,array $row2) { }

}
?>

Fig. 11. Type Instrumentation Output of the SCARF Candidate Service Class

Figure 12 shows the final SCARF paper management service class after conversion
to an SCA service. Each of the adapted SCARF application pages from which the ser-
vice operations were extracted are converted to SCA WSDL clients of the service using
the final transformation of Section 3.4, and the migration is complete.

4.6 SCARF / SOA: Testing the Result
We validated the conversion of the SCARF paper management subsystem into a web
service by testing the migrated SCARF web application in two ways.

First, we already knew how to cover all of the new web service operations from the
SCARF browser interface, because we already had to test all of the operations of the
candidate service class from the web interface as part of the type inference instrumenta-
tion step. To test the migrated SCARF, we exercised all of the same links in the SCARF
user interface to cover all of the operations of the new paper management web service,
and verified that the behaviour and output of each of the pages was the same for these
tests in both the original and the migrated web application.

Second, to be certain that we had not changed any hidden behaviour, we logged
the values of PHP variables before and after each tagged candidate service operation
code segment in the original application, and compared those values to the same vari-
ables before and after the calls to the corresponding web service operations of the new
extracted SCARF paper management web service.

5 Related Work
Our approach does not attempt to solve the identification of services, rather we leverage
the results of other research such as the work done by Asuncion et al. [4], which uses a
goal-based, model-driven approach to identify business rules in the application.

There has been a lot of work on migration of traditional legacy systems to SOA.
Lewis et al.’s [8] SMART process provides a set of guidelines to identify the context,
current system and target SOA system states and the gaps between them, and suggests
the steps required to create a migration strategy. O’Brien et al. [14] describe a strat-
egy for architecture reconstruction in legacy systems by identifying and reusing legacy
components as services. Zhang and Yang introduce the use of cluster analysis [15], and

A Framework for Migrating Web Applications to Web Services 13

<?php
include_once ("functions.php");
include_once "papers_return.php";
include "SCA/SCA.php";

/**
* @service
* @binding.soap
*/

class papers {
/**

* @param string $_POSTStr
* @param integer $id
* @param integer $num
* @return string
*/

function addAuthors (string $_POSTStr, integer $id, integer $num) {
$_POST = unserialize ($_POSTStr);
foreach ($_POST [’authors’] as $author) {

if (! empty ($author)) {
query ("INSERT INTO authors (‘paper_id‘, ‘user_id‘, ‘order‘) VALUES (’".$id."’, ’".

mysql_real_escape_string ($author)."’, ’".$num."’)");
}
$num ++;

}
return serialize (new addAuthors_return ());

}
/**

* @param string $id
* @param string $oldname
* @param string $name
* @param string $ext
* @param string $type
* @param string $data
* @return string
*/

function updateFile (string $id, string $oldname, string $name, string $ext, string $type, string $data) {
query ("DELETE FROM files WHERE paper_id=’".$id."’ AND name=’".$oldname."’");
query ("INSERT INTO files (paper_id, name, ext, type, data) VALUES (’".$id."$’, ’".$name."’, ’".$ext."’, ’".$

type."’, ’".$data."’)");
return serialize (new updateFile_return ());

}
/**

* @param string $newname
* @param integer $id
* @param string $oldname
* @return string
*/

function updatePaper2 (string $newname, integer $id, string $oldname) {
query ("UPDATE files SET name=’".$newname."’ WHERE paper_id=’".$id."’ AND name=’".$oldname."’");
return serialize (new updatePaper2_return ());

}
/**

* @param integer $id
* @param string $oldname
* @return string
*/

function deletePaper (integer $id, string $oldname) {
query ("DELETE FROM files WHERE paper_id=’".$id."’ AND name=’".$oldname."’");
return serialize (new deletePaper_return ());

}

////////// (10 more service operations) //////////
}
?>

Fig. 12. Final Migrated SCARF Paper Management Service Class

Dwivedi and Kulkarni present a model-driven approach for service identification which
utilizes process maps and service hierarchies [16]. Other approaches are presented by
Chen et al. [17] and Aversano et al. [18].

Much less work has been done in the area of migrating web applications to SOA.
Tatsubori and Takashi’s H2W framework [19] constructs web service wrappers for ex-
isting multi-paged web applications, and Dezhgosha and Angara [20] adiscuss how web
services can be used to leverage existing web applications in a similar way. Vijaya and
Rajan [21] focus on exploring the benefits of converting to web services, and Ajlan and
Zedan [22] have worked on exposing the assignment module of Moodle as a web ser-
vice, using a UML collaboration diagram to analyze and capture the necessary features.

14 Asil A. Almonaies, Manar H. Alalfi, James R. Cordy, and Thomas R. Dean

In contrast, our work proposes a concrete generic framework of iterative steps for
the migration of identified functionality to web services. Our goal is automation, and we
have implemented our framework as a source transformation-based toolset that largely
automates the migration of identified service operations in legacy PHP web applications
to SCA-based web services.

6 Conclusions and Future Work
In this paper we have presented a general framework and tool prototype that automates
the migration of monolithic web applications to web services in an SOA environment.
The framework represents a new approach to the problem of migrating legacy systems
to service-oriented architecture. It is one of the first approaches to explore the area
of moving monolithic web applications to SOA, and the first to describe a complete
detailed process with significant levels of automation.

Our framework consists of several automated steps: candidate service refactoring,
candidate service separation, parameter type inference, service component conversion,
and database refactoring. The result of applying our process is a new web application
in which identified business operations have been separated into web services that both
serve the original web application and can be reused by other applications.

At present our prototype implementation does not handle every feature of the PHP
language. In particular, the refactoring step does not always detect all modifications or
uses of variables in the tagged candidate service code fragments, in particular when
variables appear inside strings. As a result the inferred parameters and return classes
may in some unusual cases be incomplete. However, this is a well understood problem
and it is relatively straightforward to extend the implementation. Due to the use of
the TXL source transformation engine and its PHP grammar, at present our source
transformations do not retain PHP comments from the original code. This is a known
difficulty with source transformation tools, and can be addressed using the techniques
described in Malton et al. [23].

There are several future lines of research for our work. While our migration process
presently uses serialization to transfer non primitive data types, further analysis of the
client application and the candidate service class could provide automated assistance for
the migration of core data structures to Service Data Objects (SDO-DAS-XML) [24].
Currently every identified code segment in the original application is converted into a
separate service operation. Clone detection techniques could identify similar operations
and merge them into a single operation. While we have illustrated the automation of
our process on the PHP language, our framework and its steps are not specific to any
particular language. Extending our prototype automated migration tools to other web
application languages such as Python is another area for future research.

References

[1] Tatsubori, M., Takahashi, K.: Decomposition and abstraction of web applications for web
service extraction and composition. In: ICWS. (2006) 859 –868

[2] Rajan, A., Otieno, J.: Leveraging traditional distributed applications to web services for
e-learning applications. In: DEXA. (2004) 430 – 435

A Framework for Migrating Web Applications to Web Services 15

[3] Dezhgosha, K., Angara, S.: Web services for designing small-scale web applications. In:
EIT. (2005) 4 pp. –4

[4] Asuncion, C.H., Iacob, M.E., van Sinderen, M.: Towards a flexible service integration
through separation of business rules. In: EDOC. (2010) 184–193

[5] Achour, M., Betz, F., Dovgal, A., Loopes, N., Magnusson, H., Richter, G., Seguy, D., Vrana,
J.: PHP Manual. http://www.php.net/manual/en/index.php (last accessed Aug 2011)

[6] G. Van Rossum: Python programming language. http://www.python.org/ (last accessed
Aug 2011)

[7] Smith, D.: Migration of legacy assets to service-oriented architecture environments. In:
ICSE. (2007) 174–175

[8] Lewis, G., Morris, E., O’Brien, L., Smith, D., Wrage, L.: SMART: The service-oriented
migration and reuse technique. In: STEP. (2005) 222–229

[9] Sneed, H.M., Sneed, S.H.: Creating web services from legacy host programs. In: WSE.
(2003) 59–65

[10] A. Almonaies, J.R. Cordy and T.R. Dean: Legacy System Evolution towards Service- Ori-
ented Architecture. In: SOAME. (2010) 53–62

[11] Cordy, J.R.: The TXL source transformation language. Sci. Comput. Program. 61 (2006)
190–210

[12] Moodle Trust: Moodle. http://Moodle.org (last accessed October 2010)
[13] Tarjan, P., McKeown, N.: The Stanford Conference and Research Forum.

http://scarf.sourceforge.net/ (last accessed March 2013)
[14] O’Brien, L., Smith, D.B., Lewis, G.A.: Supporting migration to services using software

architecture reconstruction. In: STEP. (2005) 81–91
[15] Zhang, Z., Yang, H.: Incubating services in legacy systems for architectural migration. In:

APSEC. (2004) 196–203
[16] Dwivedi, V., Kulkarni, N.: A model driven service identification approach for process cen-

tric systems. In: Congress on Services Part II, SERVICES-2. (2008) 65 –72
[17] Chen, F., Li, S., Chu, W.C.C.: Feature analysis for service-oriented reengineering. In:

APSEC, IEEE Computer Society (2005) 201–208
[18] Aversano, L., Cerulo, L., Palumbo, C.: Mining candidate web services from legacy code.

In: WSE. (2008) 37–40
[19] Tatsubori, M., Takashi, K.: Decomposition and abstraction of web applications for web

service extraction and composition. In: ICWS. (2006) 859–868
[20] K. Dezhgosha and S. Angara: Web services for designing small-scale Web applications. In:

International Conference on Electro Information Technology. (4 pages, 2005)
[21] Rajan, A.V.S., Otieno, J.: Leveraging traditional distributed applications to web services for

e-learning applications. In: 15th Intl. Workshop on Database and Expert Systems Applica-
tions. (2004) 430–435

[22] A. Ajlan and H. Zedan: E-learning (MOODLE) Based on Service Oriented Architecture.
In: the EADTU’s 20th Anniversary Conference. (2007) 62–70

[23] Malton, A.J., Schneider, K.A., Cordy, J.R., Dean, T.R., Dousineau, D., Reynolds, J.: Pro-
cessing software source text in automated design recovery and transformation. In: IWPC.
(2001) 127–134

[24] Charters, G., Peters, M., Maynard, C., Srinivas, A.: An introduction to Service Data Objects
for PHP. http://www.ibm.com/developerworks/library/os-sdophp/ (last accessed July 2011)

