
Models are Code too:
Near-miss Clone Detection for Simulink Models

Manar H. Alalfi James R. Cordy Thomas R. Dean Matthew Stephan Andrew Stevenson

School of Computing, Queen’s University, Kingston, Canada
{alalfi, cordy, dean, stephan, andrews}@cs.queensu.ca

Abstract—While graph-based techniques show good results
in finding exactly similar subgraphs in graphical models, they
have great difficulty in finding near-miss matches. Text-based
clone detectors, on the other hand, do very well with near-
miss matching in source code. In this paper we introduce
SIMONE, an adaptation of the mature text-based code clone
detector NICAD to the efficient identification of structurally
meaningful near-miss subsystem clones in graphical models. By
transforming graph-based models to normalized text form, SI-
MONE extends NICAD to identify near-miss subsystem clones
in Simulink models, uncovering important model similarities
that are difficult to find in any other way.

I. INTRODUCTION

Model clone detection refers to the process of identify-
ing similar or identical fragments in higher-level software
models based on some measure of similarity. While its
counterpart, code clone detection, is a mature and established
area of research [1], model clone detection is relatively new
and has not been investigated as thoroughly. This is an issue
for two reasons: first, model driven development is rapidly
becoming a dominant method of software development, and
second, the potential impact of identifying redundancy at
higher levels is greater than at lower levels.

Not surprisingly, approaches to model clone detection to
this point have primarily utilized graph-based techniques [2,
3, 4]. That is, they represent the models as nodes and
edges and use variations of subgraph matching techniques to
find clones. While natural and efficient for exact matching
in visual models, these methods have had less success in
near-miss clone detection [4]. In this paper, we propose
a method for leveraging existing near-miss textual code
analysis techniques, and in particular the hybrid syntactic
approach of the NICAD [5] code clone detector, to detect
near-miss model clones.

Our use case is the analysis and reengineering of thou-
sands of Simulink models as part of the ongoing mainte-
nance of a production automotive product line. The contri-
butions of our approach are:

• Adaptation of an efficient, scalable text-based clone de-
tector (NICAD) to detect near-miss clones in graphical
models. Existing methods use graph matching.

• Efficient detection of not only type 1 (exact) and type
2 (renamed) model clones, but also type 3 (near-miss)

model clones. Existing approaches handle types 1 and
2, but have difficulty with near-miss.

• Detection of model clones on three different levels of
syntactic granularity: Simulink (entire) “model”, (sub-)
“system” and (detailed) “block”. Existing approaches
concentrate on the block level.

• Detection of structurally meaningful (near-miss) syn-
tactic clones. Existing approaches use flattened sub-
graph matching [6] rather than syntactic structure, and
use post-filtering to find structural units.

In this paper we demonstrate our results with examples of
type 1, 2 and 3 clone identification in Simulink example
models at the subsystem level of syntactic granularity. Near-
miss clone detection allows us to find clones that are frag-
ments of subsystems or blocks as well as entire subsystems.

The remainder of this paper is structured as follows.
In Section II we extend the usual definitions for clone
types to model clones and demonstrate them by example.
Section III outlines the challenges and implementation of
our method as a set of NICAD clone detector plugins, using
Simulink automotive models as a running example. Section
IV presents an evaluation of our text-based method by
comparison with the state-of-the-art ConQAT graph-based
method on a larger Simulink model set. Section V compares
to other related work in model clone detection, and Section
VI concludes and sets out our plans for future work. This
paper is based in part on our preliminary position paper at
IWSC 2012 [7], which it fleshes out to provide the details of
our method, evaluation and comparison with related work.

II. MODEL CLONE TYPES

We begin by defining what we mean by a model clone.
Unlike source code, which is represented as linear text,
models are typically represented visually, as box-and-arrow
diagrams, and the clones we are searching for are similar
subgraphs of these diagrams. Code clone detection tech-
niques can be categorized according to the types of clones
they can identify [1]. We adopt a similar categorization for
model clones. In our first experiment we have identified three
types of model clones at the Simulink subsystem level. We
begin by demonstrating these types using examples from the
Simulink demo set 1.

1http://www.mathworks.com/help/techdoc/ref/demo.html

978-1-4673-2312-3/12/$31.00 c© 2012 IEEE

Tfmaxs
2

Tfmaxk
1

Torque
Conversion

2/3*R*muk

Ratio of static
to kinetic

mus/muk

Fn
1

Figure 1. A type 1 (exact) model clone - the Friction Mode subsystem, which occurs in both the Sldemo Clutch and the Sldemo Clutch if example
models. NICAD similarity 100%.

Figure 2. A type 2 (renamed) model clone - the Required Friction for Lockup subsystem (Left) and the Break Apart Detection subsystem (Right), both
in the Sldemo Clutch if example model. NICAD similarity 85%.

Figure 3. A type 3 (near-miss) model clone - the Throttle.throttle estimate subsystem (Left) and Speed.speed estimate subsystem (Right) of the
sldemo fuelsys model. NICAD similarity 76%.

1) Type 1 (exact) model clones: Identical model frag-
ments except for variations in visual presentation, lay-
out and formatting. Figure 1 shows an example from
two different Simulink demo models, Sldemo Clutch and
Sldemo Clutch if, which include the identical subsystem
Friction Mode.

2) Type 2 (renamed) model clones: Structurally identical
model fragments except for variations in labels, values,
types, visual presentation, layout and formatting. Figure 2
shows an example type 2 clone of two different subsystems,
Required Friction for Lockup and Break Apart Detection,
in the Sldemo Clutch example model of the Simulink demo
set.

3) Type 3 (near-miss) model clones: Model fragments
with further modifications, such as changes in position or
connection with respect to other model fragments and small
additions or removals of blocks or lines in addition to
variations in labels, values, types, visual presentation, layout
and formatting. Figure 9 shows a type 3 clone between
the Throttle.throttle estimate and the Speed.speed estimate
subsystems of the sldemo fuelsys model of the Simulink
demo set. A new block and line have been added, as well
as naming and attribute changes to other blocks and lines.

Like code clones, model clones can cross structural and
hierarchical levels. For example, the type 2 model subsystem
clones of Figure 2 actually come from two different levels
of abstraction in the Sldemo Clutch model of the Simulink
automotive examples set (Figure 4).

III. APPROACH

Our approach, called SIMONE (SIMulink clONE detec-
tor) extends NICAD [5], a language-sensitive code clone
detection tool based on parsing and text-comparing syntactic
fragments, to model clone detection. NICAD is explicitly
designed to allow for unexpected differences in near-miss
clones up to a given difference threshold. While NICAD is
based on a plugin architecture that allows for new languages
and normalizations, extending it to graphical models is a
different kind of challenge that required both extensive
transformations of the models and significant changes to
NICAD itself.

This section outlines our plugins and changes to NICAD
to extend it to support model clone detection for Simulink
models. We use the automotive model set from the Simulink
demo models as a running example to demonstrate the effect
of each step. The Simulink automotive demonstration model
set is appropriate both because the demonstration models are
similar to automotive models used in industry, and because it
contains several different versions of each example, yielding
an unusually large number of clones to find. Our approach is
designed to be used on the large scale production automotive
models of our industrial partners at General Motors, which
for proprietary reasons cannot be shown here.

There are several challenges to adapting a parser-based
textual clone detector to find model clones. Models are
typically represented visually as box-and-arrow-style dia-
grams, and the clones we are searching for are similar

Figure 4. The type 2 (renamed) model clone of Figure 2, showing the multi-level context of the cloned subsystems.

...
System {

Name "onoff"
Location [168, 385, 668, 686]
Open on
ModelBrowserVisibility off
ModelBrowserWidth 200
ScreenColor "automatic"
PaperOrientationi "landscape"
PaperPositionMode "auto"
PaperType "usletter"
PaperUnits "inches"
ZoomFactor "100"
AutoZoom on
ReportName "simulink-default.rpt"
Block {

BlockType DiscretePulseGenerator
Name "Discrete Pulse\nGenerator"
Position [45, 25, 75, 55]
Amplitude "1"
Period "2"
PulseWidth "1"
PhaseDelay "0"
SampleTime "1"

}
Block {

BlockType Product
Name "Product"
Ports [2, 1, 0, 0, 0]
Position [145, 67, 175, 98]
Inputs "2"
SaturateOnIntegerOverflow on

}
...

}
...

Figure 5. Example snippet of the textual representation used by Simulink
to store graphical models. Note the large number of elements related
to presentation and formatting, which have no meaning from the model
cloning point of view.

subgraphs of the diagrams. Fortunately, for exchange reasons
there are textual representations of these diagrams available,
for example the XMI exchange format for UML diagrams.
Simulink stores its models in a textual representation on
disk, and we can use this representation (Figure 5) as the
text input to SIMONE.

A. Simulink TXL Grammar

Because NICAD is a parser-based language-sensitive
clone detector based on the TXL [8] parser, the first ex-
tension we needed was a TXL grammar to parse Simulink
model files. Unfortunately there is no publicly available BNF
grammar or published meta-model reference for the textual
representation of Simulink models. Thus we used grammar
inference techniques to derive a formal TXL grammar from
a large set of example Simulink models in the public domain.

Using iterative inference to extend the grammar as more
features were discovered as we expanded the example set,
we were able to construct a TXL grammar that accounts
for all characteristics of Simulink models and its higher-
level Stateflow extensions (Figure 6). Our grammar identifies
all Simulink constructs, including models, systems, blocks,
lines, ports, branches and other fine-grained model compo-
nents, and has been validated on the complete set of all
Simulink models publicly available to us.

B. Extractor Plugin

Unlike language-insensitive textual clone detectors,
NICAD is designed to identify structurally meaningful
clones, that is, those that correspond to entire syntactic units
such as a classes, methods, blocks or statements rather than
arbitrary text sections. It works by parsing the source code
to identify, extract and normalize all instances of such a
unit, called the “potential clones”, and then compares them
line-wise to identify near-miss clones using relaxed textual
comparison.

Fortunately, many modeling languages, including
Simulink, are hierarchical and have natural syntactic units
to compare. In Simulink we can identify at least three levels
of granularity: whole models, (sub-) systems, and blocks.
We can think of these levels as roughly corresponding

%%%%%%%%%%%%%%%%%%%%
% Line subgrammar -
% parses Simulink "Line" structures, e.g.
%
% Line {
% Labels [1, 0]
% SrcBlock "Sine Wave"
% SrcPort 1
% Points [30, 0; 0, -50]
% DstBlock "Product"
% DstPort 2
% }
%%%%%%%%%%%%%%%%%%%%

define line_list
’Line ’{ [NL][IN]

[repeat line_element] [EX]
’} [NL]

end define

% line elements of interest
define line_element

[srcblock_element]
| [srcport_element]
| [dstblock_element]
| [dstport_element]
| [default_element]

end define

Figure 6. A small sample of the inferred TXL grammar for Simulink
model files. The entire grammar consists of 90 productions in about 550
lines of TXL definitions.

to whole source files, functions, methods or classes, and
(possibly compound) statements in other languages.

1) Model Granularity: At the model granularity, we treat
entire Simulink models as the potential clones. Simulink
models consist of (sub-) systems, which themselves are built
up from blocks, lines and ports. At this level of granularity
we can evaluate similarity of entire models, such as the
sldemo clutch and sldemo clutch if near-miss whole model
clones in the Simulink demo set.

2) System Granularity: The Simulink “system” (i.e., sub-
system) level of granularity is probably the most important
level for model clone detection, exposing structurally mean-
ingful clones of parts of models. Simulink subsystems are
nested and hierarchical, and correspond roughly to functions,
methods or classes in other languages, yielding clones of
many sizes at many levels. We have identified several classes
of both internal (within model) and external (cross-model)
subsystem clones in the Simulink automotive examples.
For example, the Friction Model subsystem in both the
sldemo clutch and sldemo clutch if models, shown in Fig-
ure 1, is an exact subsystem clone across those models; and
the Required Friction for Lockup and Break Apart Detection
subsystems of the Sldemo Clutch if example model, shown
in Figure 2, are near-miss subsystem clones within a single
model.

3) Block Granularity: Blocks are the finest-grained ele-
ments of Simulink models. However, blocks can also contain
subsystems, which represent a group of blocks and lines that
work together to provide a specific functionality.

While we have built “potential clone” extractor plugins for
all three levels of Simulink granularity, we have concentrated
on model clones at the (sub-) system level. Since in general
Simulink whole models consist of a single system with
subsystems, and since blocks below the level of systems are
in general too small to be interesting for clone detection, we
do not consider this to be a significant limitation. Subsystem
granularity is also the case that is of primary interest to our
industrial partners in the context of our work with them.

Due to differences in Simulink by comparison with tradi-
tional programming languages, our Simulink system extrac-
tor plugin has been developed in a different way than usual
for NICAD. NICAD’s plugin process order involves parsing
and extraction of potential clones, optionally followed by
renaming, filtering, abstraction and custom normalization.
However, in the case of Simulink we found that filtering
(removal of irrelevant parts) and custom normalization (sort-
ing the order of Simulink blocks) must precede renaming
(normalization of identifiers and literals), since they depend
on original names and values. As a result, we could not use
the standard NICAD plugin process order. To work around
this limitation of NICAD, the SIMONE extractor plugin was
developed to include the filtration and sorting normalization
steps as part of extraction. They remain conceptually sepa-
rate steps however, and if in future NICAD is enhanced to
allow for specification of other process orders, then these
steps can easily be separated into NICAD plugins.

We tested and validated our original subsystem extractor
on the entire set of Simulink demo models provided by
MathWorks, concentrating on the automotive example mod-
els in detail. Even without any modification of the original
source text form of the Simulink models, our Simulink
parser and subsystem extractor allowed many exact and ex-
act near-miss subsystem clones in the automotive examples
to be found (Table I). However, on closer examination most
of them were uninteresting clones of presentation data, and
only ten were of any interest. A great many other clones
were not found, and clearly more work needed to be done.

C. Filtering

A quick investigation showed that one of the major
problems was that the text form of Simulink model files
is dominated by information irrelevant to the meaning
of the models. Figure 5 shows an example of the large
numbers of irrelevant elements relating to position, color,
font, spacing, orientation, printing and other attributes that
dominate Simulink models in their text representation. Even
a few small changes in attributes such as color and font can
make identical model subsystems look very different when
compared in this original text form, and prevent NICAD
from finding them as clones.

In order to remove these irrelevant differences from the
comparison of subsystems, we designed a filtering plugin
to identify and remove irrelevant elements and blocks from

Total nontrivial
subsystems

357
Extractor only Filtered Filtered & Sorted Filtered, Sorted &

Renamed

Clone Type Type 1 Type 3-1
@30% Type 1 Type 3-1

@30% Type 1 Type 3-1
@30% Type 2 Type 3-2

@30%

Clone Pairs 116 / 10* 364 / 164* 204 204 303 181 279 1938

Clone Classes 8 / 4* 57 / 56* 44 55 45 52 48 24

Clone Coverage 8% / 3% 52% / 46% 37% 48% 42% 45% 49% 75%

Table I

NUMBER AND SIZE OF SUBSYSTEM MODEL CLONES FOUND IN THE AUTOMOTIVE EXAMPLES OF THE SIMULINK DEMO MODEL SET

The Simulink demo automotive examples are a good test of model clone detection since they contain a great many variants of the same models. Even with
raw extraction and no filtering, NICAD finds some of these exact model subsystem clones. However, without filtering the majority of these clones consist
entirely of Simulink presentation information. When these are ignored, very few true clones are found (*). The derived clone types 3-1 and 3-2 refer to
near-miss exact and near-miss type 2 clones respectively.

extracted subsystem potential clones. Due to the continued
lack of definitive documentation for the form of Simulink
model files mentioned above, we once again were faced with
an inferential process, in which we gradually tuned our filters
to remove irrelevant attributes as they were discovered. In
the end, our filtering transformation removes more than 200
different kinds of attribute lists and elements to reduce the
representation of model subsystems to their core elements
representing the model’s blocks, lines and ports themselves,
unadorned by layout, formatting and presentation attributes.

Filtering significantly improved recall in finding exact
and near-miss exact subsystem clones in the automotive
example system (Table I). The total number of subsystem
clones found was significantly increased, and virtually all of
those detected were of interest. Removing layout attributes
also allowed us to find larger subsystem clones, covering
a much large proportion of the extracted subsystems. Hand
validation of all clones found in the automotive example
models showed that all were valid subsystem clones.

D. Sorting

While filtering had improved our subsystem clone de-
tection a great deal, we found that there were still some
subsystem clones we could identify by hand that were still
not detected. The remaining problem was a fundamental
one when using a linear text-based comparison method on
graphical data: the order of blocks, lines and ports in the
textual representation of a model subsystem does not change
its graphical meaning. Figure 8 demonstrates this problem
well, showing the original Simulink text representation of
two subsystems of the Simulink automotive models, Driver
Switch and Passenger Switch, that we later found to be
clones. Applying NICAD to these two subsystems will
report that they are different, even though they are not, since
the order of the matching blocks in the text form is different.

Our solution to this problem was simple: we defined and

implemented a cannonical sort of blocks, lines, ports and
branches as a sort transformation on the filtered subsystem
potential clones. Each subsystem in Simulink consists of a
set of blocks, lines, ports, and branches, possibly containing
deeper subsystems. In the text representation, the sequence
of these model elements may not be the same, even in
identical subsystems. Thus we developed a sorting plugin
that sorts model elements according to the following criteria:

• Sort Blocks by Type Name
• Sort Lines by Source Block
• Sort Ports by Port Name
• Sort Branches by Destination Block
Figure 7 shows an example of a type 1 (exact) subsystem

clone detected with the sorting plugin added. A clone class
of 13 instances of this subsystem clone from different
models in the automotive example set was identified, with
a joint similarity of 98%. Before sorting, only some of
these instances were found to be clones, while others were
missed altogether. Sorting significantly increased the number
of exact subsystem clones found, but allowed much larger
near-miss clones to be identified, reducing the total number
reported (Table I).

E. Renaming

With the sorting plugin resolving problems of linear repre-
sentation, SIMONE was able to find all exact and near-miss
exact subsystem clones in the automotive example model
set using near-miss thresholds of 5% and 30% respectively.
While the 30% threshold could find some type 2 (renamed)
subsystem clones as well, to find all of them we would need
to remove naming differences using a NICAD renaming
plugin for Simulink.

Unfortunately, the generic renaming algorithm provided
with NICAD to rename identifiers in other programming
languages could not be used for Simulink. Unlike other
languages, names in the text representation of Simulink

neutral_up_down
1

mutually_exclusive

neutral

up

down

validated_neutral

validated_up

validated_down

check_up

action

reset
checked_action

check_down

action

reset
checked_action

Goto1
[reset]

From2
[reset]

From1
[reset]

reset
4

down
3

up
2

neutral
1

/Users/manaralalfi/Desktop/NiCad 3.2 Simulink/Simulink/Publicmodel/automotive/powerwindow03.mdl

printed 13 Apr 2012 14:56 page 1/1

powerwindow03/power_window_control_system/validate_driver

Figure 7. A type 1 (exact) model clone - the Validate driver subsystem, which occurs in powerwindow01 and five other Simulink automotive models in
the Simulink demo set. NICAD similarity before sorting 77% (type 3), after sorting 98% (near exact).

Figure 8. An example of how unsorted model elements (such as Lines) can affect the precision and recall of NICAD on model clones.

models are represented as quoted strings, for example “ADC
driver up” and “Vin” in Figure 8. Moreover, some names in
the text representation of Simulink models, such as block
and line types, should not be renamed when comparing for
clones.

We therefore needed a much more sophisticated blind
renaming plugin for Simulink than for other languages
handled by NICAD. To implement type 2 renaming we
used TXL agile parsing techniques to grammatically dis-
tinguish elements to be renamed from those that should
not be, and installed this transformation as a renaming

plugin for Simulink. The plugin anonymizes all names and
values associated with elements and blocks, preserving only
BlockType and LineType elements for comparison, allowing
for detection of type 2 and near-miss type 2 (type 3-2)
subsystem clones in Simulink models.

Figure 9 shows the effect of renaming in the detection of
a near-miss type 2 model clone. Before renaming, the Pres-
sure.map estimate subsystem (A) and Speed.speed estimate
subsystem (B) were detected as near-miss clones, but only
after renaming was a third clone, Speed.speed estimate
subsystem (C), added to the same clone class.

(A)

(B)

(C)

Figure 9. An example of the effect of renaming on NICAD detection
of type 2 model clones. The Pressure.map estimate subsystem (A) and
Speed.speed estimate subsystem (B) were initially detected without renam-
ing. After renaming the new clone Speed.speed estimate subsystem (C) of
the sldemo fuelsys model was recognized as another clone in the same
class. NICAD similarity 74% (near-miss, type 3).

Renaming also increased the size of (now type 2) subsys-
tem clones that could be found, reducing the total number
but increasing their coverage (Table I). Using renaming
allowed us to find over 1,900 near-miss type 2 (type 3-2)
subsystem clones in the automotive models, covering 75% of
the subsystems, consistent with the large number of different
versions of models in the demonstration examples.

IV. EVALUATION AND COMPARISON WITH CONQAT

We have evaluated SIMONE on all of the publicly avail-
able Simulink models, including all of Matlab Central, and
all of the demonstration systems distributed with Simulink.
As a parser-based technique, precision is not an issue for the
NICAD engine [9], and the real issue is recall, which we
have addressed in Table I. Even so, precision was validated
for all our test results by comparing to the original models
by hand. Our tests included systems with models of over
100,000 source lines, which are parsed and processed in
under a minute, and we continue to test larger scalability.

We compared SIMONE against ConQAT [2], a state-
of-the-art graph-based approach to finding model clones
in Simulink and other data-flow models. In the ConQAT
approach, models are flattened into graphs consisting of
their basic blocks and linear connections, normalized by
assigning each block and line a value that can be used
to compare them. Clone pairs are discovered by finding
matching subgraphs, and clustered to form clone classes.
Normalized values include the block type and some of the
block attributes while excluding “semantically irrelevant”
information, such as name and layout.

Figure 10. The nested clone problem. It is difficult to compare the results
of a near-miss method with an exact method due to differences in similarity
thresholds.

ConQAT compares models at the basic block level, ig-
noring subsystem boundaries, with a configurable parameter
that defines the minimum number of matched blocks that
need to be matched to be reported as a clone. This is in
contrast with the syntactic method of SIMONE, which uses
the natural Simulink structural boundaries for models, (sub-)
systems, and blocks.

Using the definition of model clone types in Section II,
ConQAT detects and identifies only type 2 (renamed) model
clones. ConQAT detects but does not distinguish type 1
clones because of its renaming strategy.

To compare and contrast with ConQAT, we set SIMONE
to use a NICAD 30% near-miss difference threshold. To
mimic ConQAT’s configuration we chose to use blind re-
naming to ignore differences in names and values while
including block type. This set-up both allows us to detect
and compare the set of type 2 clones discovered by SIMONE
with those detected by ConQAT, and also to demonstrate
SIMONE’s detection of type 3 clones ConQAT may not be
able to find.

Our comparison evaluation is primarily qualitative. The
reason for this is that it is difficult to obtain any comparable
numbers because of differences in the tools, specifically in
the way they report nested clones, and because of larger
block clusters. Figure 10 demonstrates the problem of nested
clones. The outer circles represent a near-miss clone pair
that has 70% similarity as reported by SIMONE. The
inner circles represent a clone pair that is contained within
the outer clone pair and is greater than 70% similar, for
example 90% similar according to SIMONE, as shown in
the diagram. If SIMONE’s NICAD difference threshold is
set to 30% then only the outer pair will be reported as a clone
pair, and the inner clone pair will be contained in that result.
Because the outer pair is not a type 2 clone, ConQAT would
display only the inner pair, assuming it met ConQAT’s type
2 criteria. Neither result is incorrect, it only depends on the
specific type of result one is looking for. Because of these
and other differences in output of the tools, we perform a
qualitative evaluation rather than a quantitative one.

In order to compare the two approaches, we use the same

pcm pcmwithnoise pcmwnoise pcmtiming

twochanneltdm fmtransdemod tdm1

twochannel tdmoftwosignals

twochanneltdmpcm

delta1 pcmwithnoise 1 pcmquant

samplingusingsampleandhold

envelop

envelopdet

detwithnoise

coherent

coherentwithoutreference

transmitter

am ssb

phaseshiftssb

twotone

dsb

simplesine

wavformmul

filterthining

SIMONE: Filtered + Sorted and Blind Renaming
ConQAT: Block+Subsystem

70% 70%

70%

fskber

fsk

100%

limiter

biterrormeas

100%

basebandtrans

ask

100%

reallifefskwnoise pll1

reallifesk fskgenerator

fskdemod

70%

Figure 11. Simulink model subsystem clone classes discovered by SIMONE - - - and ConQat —- in the SIM project.
The percentages are the minimum pairwise similarities reported by SIMONE for the clone class.

publicly available models from Matlab Central 2 that were
used by the ConQAT authors previously [10].

We could not use the Simulink demo model set because
it contains Stateflow extensions, which are not yet handled
by ConQAT. Thus our direct comparison was restricted to
three systems from Matlab Central (MPC, MUL, and SIM).
In these systems our near-miss process finds all of the clones
detected by ConQAT, including all the groups of blocks
that ConQAT identifies at the block level. We have room to
report only the results of one system, SIM, for which Figure
11 displays a Venn diagram of the Simulink subsystem
level clone classes discovered by running both tools on
the communications system project, SIM, from the Matlab
Central model set. Circles outlined with dashes represent
SIMONE near-miss clone classes discovered using filtering,
sorting, and blind renaming, while the circles outlined with
lines represent ConQAT clone classes discovered using the
default ConQAT configuration. The percentages next to the
circles represent the NICAD minimum pairwise similarity
among all the subsystems in the clone class.

In this specific project, we can see that SIMONE was
able to find all of the clones that ConQAT did, although
in some instances, the corresponding ConQAT classes were
embedded in larger near-miss SIMONE classes. Also of
note are the near-miss (70%) clone classes identified by
SIMONE only. Figure 12 shows an example of a near-
miss clone pair discovered by SIMONE in the SIM system.
The subsystems are relatively similar, differing only by the

2http://www.mathworks.com/matlabcentral/

summation block (little circle with two + signs) which
splits the subsystem into two halves in the pcmwithnoise
subsystem. ConQAT and other graph based approaches will
not detect this clone because the summation block creates
a cut vertex that partitions the graph into two smaller sub-
clones. These sub-clones may, individually, be beneath the
size threshold for detection even if the near-miss clone as a
whole is above the threshold, as is the case for this clone,
which is not reported at all using ConQAT’s default settings.
By comparison, SIMONE reports these subsystems as near-
miss clones with 72% similarity.

Overall, we found that SIMONE and ConQAT find many
of the same subsystem clones in Simulink models. However,
in each case there are some clones that one finds that the
other can not. Because ConQAT’s graph-matching technique
flattens Simulink models to ignore hierarchical structure and
does not enforce detection of entire subsystems, ConQAT is
able to find cloned clusters of blocks that do not form whole
subsystems. By contrast, SIMONE is structure sensitive,
and is designed to find only complete structural clones.
Thus, only near-miss or exact clone pairs representing entire
subsystems will be identified, and smaller nested cloned
clusters of blocks will be reported only if they are part of a
clone of a whole subsystem.

On the other hand, because ConQAT is not designed to
implement near-miss clone detection, SIMONE finds many
more challenging Type-3 clones that ConQAT does not. We
are currently automating the comparison process and trying
to resolve the parsing problems of ConQAT so we can report

Figure 12. Example of a type 3 (near-miss) subsystem clone pair discovered by SIMONE that will not be found by ConQAT. The introduction of the
summation block (labelled + +) in the subsystem on the right creates a cut vertex that partitions the graph into two exact sub-clones each too small to be
of interest.

on all of the models available to us [11].
In theory, both SIMONE and ConQAT can each be

adapted to approximate what the other does: ConQAT could
be extended to allow for configuration of a similarity thresh-
old to detect near-miss graph clones, and SIMONE could
use a source transformation to flatten the structure, filter
out the lines, and do block-level evaluation. However, there
will still be some kinds of unexpected near-miss changes
that ConQAT may never detect, and extending SIMONE to
ignore structure is fundamentally contrary to its intended
purpose.

V. RELATED WORK

In addition to ConQAT, there are two other approaches
that employ graph-based techniques for Simulink model
clone detection. Pham et al. [4] developed ModelCD, in-
cluding the eScan and aScan algorithms to detect exact-
and near-miss- clones, respectively. ModelCD attempts to
improve on ConQAT by utilizing graph mining techniques
and Simulink-specific properties rather than relying on sub-
graph matching heuristics alone. We chose not to include
it in our comparison because ModelCD operates in roughly
the same way as ConQAT and, as the ConQAT authors have
demonstrated [10], the improvements in ModelCD have little
impact on results, and do not scale well. ModelCD is also
not publicly available.

Peterson [3] has developed the Naive Clone Detector to
detect exact Simulink clones. Like ModelCD, it uses graph-
based modeling and Simulink information, but by contrast,
it employs a top-down approach. We did not include Naive
Clone Detector in our evaluation as it also is similar to
ConQAT, and the author was unable to release it to us.

Al-Batran et al. [6] identify a number of semantics-
preserving transformations that allow for detection of se-
mantically equivalent Simulink clones. By performing these
transformations, model clone detection recall is increased:
semantically similar model clone instances are returned in

addition to the structurally similar clones detected by other
approaches. We may be able to incorporate their work
into our approach by representing these transformations as
textual source transformations and applying them to our
normalized NICAD Simulink model representations.

In theory graph-based algorithms such as ConQAT may
be able to detect the model clones we present in Figure 12 if
the parameters are relaxed sufficiently. However, this would
result in large numbers of false positives, yielding very poor
precision and making the result meaningless. By contrast,
SIMONE efficiently detects such clones at a 30% near-miss
threshold with no false positives.

In previous work, we surveyed the entire area of code-
clone detection [1]. NICAD was chosen as the code-clone
technique to adapt as the basis of SIMONE because of
its parsing, normalizing, and text-comparing abilities and
because it was specifically designed to efficiently detect
near-miss clones, something which had not yet been accom-
plished in the model clone detection domain.

We have also surveyed work on model comparison tech-
niques [12], which included ConQAT and ModelCD. The
majority of research in the area of model comparison is
based on finding corresponding and differing model ele-
ments in a set or sets of models and much of it is geared
towards model versioning. Model clone detection, especially
near-miss model clone detection, differs from this idea:
Model clone detection attempts to find a group of similar
or related elements that have likely been reproduced from
one another rather than explicitly trying to identify what
individual elements are the same or are different. Thus,
many of approaches in our survey are not applicable for
model clone detection. The only approaches that may be
leveraged are those that use similarity based metrics for
comparison, such as EMFCompare [13], which performs
similarity comparison on structural system models. We leave
clone detection in that area as future work, as we are
currently interested in Simulink behavioral models only.

Gold et al. [14] have identified new clone types for data
flow languages similar to our proposed extension of code
clone types to models. Gold’s data flow clone types include:
1) exactly-copied code fragments; 2) exactly-copied code
fragments with layout and comment changes; 3) exactly-
copied code fragments with layout, comment, and literal
values changes; and 4) code fragments with modifications.
Since Simulink is a data-flow modeling language, we could
adapt to these slightly different definitions by modifying
NICAD appropriately.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced a method for using text-
based code clone detectors to find near-miss clones in graph-
ical models, and demonstrated SIMONE, an implementation
for Simulink models based on the NICAD clone detector.
We outlined the challenges of using a parser- and text-based
method on graphical models, and described our solutions
using filtering and sorting of the text representation. Finally,
we compared the results obtained with our new method with
a state-of-the-art graph-based method and showed that our
near-miss detection can find meaningful clones that graph-
based methods can miss. Our approach generalizes to other
modeling languages, such as UML-based ones, with only
customization of the filtering and sorting algorithms.

While our method has been tested and hand-validated on
a large set of publicly available Simulink models, it has
yet to be used on industrial examples, and we look forward
to working with our industrial partners at General Motors
to analyze their systems. Although we inherit the proven
textual clone accuracy and scalability of NICAD [9], it is
not clear that all of these attributes transfer to its use on
graphical models, and we are currently running a larger scale
experiment to statistically validate and compare our method
on a much larger set of models. We are also working on ex-
tending our method with a new plugin to detect consistently
renamed model clones, those whose labels and values are
renamed in a consistent fashion rather than arbitrarily.

A practical issue for model clone detection is the graphical
presentation of results. While we are eventually planning to
use the ConQAT Eclipse plugin designed for this task, at the
moment we generate Simulink colorization scripts to show
SIMONE results directly in the Simulink IDE.

ACKNOWLEDGEMENTS

This work is supported by NSERC, the Natural Sciences
and Engineering Research Council of Canada, as part of
the NECSIS Automotive Partnership with General Motors,
IBM Canada and Malina Software Corp. We gratefully
acknowledge the assistance of Benjamin Hummel of the
Technical University of Munich in helping us to understand
and run ConQAT, and the inspiration of Mark Harman’s
SCAM 2010 keynote address [15], in which he observed
that “models are source code too”.

REFERENCES

[1] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and
evaluation of code clone detection techniques and tools: A
qualitative approach,” Sci. Comput. Program., vol. 74, no. 7,
pp. 470–495, 2009.

[2] F. Deissenboeck, B. Hummel, E. Jurgens, B. Schatz, S. Wag-
ner, J. F. Girard, and S. Teuchert, “Clone detection in automo-
tive model-based development,” in 30th Int. Conf. on Softw.
Eng., 2009, pp. 603–612.

[3] H. Petersen, “Clone detection in Matlab Simulink models,”
Master’s thesis, Tech. Univ. Denmark, 2012.

[4] N. H. Pham, H. A. Nguyen, T. T. Nguyen, J. M. Al-Kofahi,
and T. N. Nguyen, “Complete and accurate clone detection in
graph-based models,” in 31st Int. Conf. on Softw. Eng., 2009,
pp. 276–286.

[5] C. K. Roy and J. R. Cordy, “NICAD: Accurate detection of
near-miss intentional clones using flexible pretty-printing and
code normalization,” in 16th Int. Conf. on Program Compreh.,
2008, pp. 172–181.

[6] B. Al-Batran, B. Schätz, and B. Hummel, “Semantic clone de-
tection for model-based development of embedded systems,”
Model Driven Eng. Languages and Syst., vol. 6981, pp. 258–
272, 2011.

[7] M. H. Alalfi, J. R. Cordy, T. R. Dean, M. Stephan, and
A. Stevenson, “Near-miss model clone detection for Simulink
models,” in 6th Int. Works. on Softw. Clones, 2012, pp. 78–79.

[8] J. R. Cordy, “The TXL source transformation language,” Sci.
Comput. Program., vol. 61, no. 3, pp. 190–210, 2006.

[9] C. K. Roy and J. R. Cordy, “A mutation/injection-based
automatic framework for evaluating code clone detection
tools,” in 4th Int. Works. on Mutation Analysis, 2009, pp.
157–166.

[10] F. Deissenboeck, B. Hummel, E. Juergens, M. Pfaehler, and
B. Schaetz, “Model clone detection in practice,” in 4th Int.
Works. on Softw. Clones, 2010, pp. 57–64.

[11] M. Stephan, M. H. Alafi, A. Stevenson, and J. R. Cordy,
“Comparison of model clone detection approaches,” in 6th
Int. Works. on Softw. Clones, 2012, pp. 84–85.

[12] M. Stephan and J. R. Cordy, “A survey of methods and
applications of model comparison,” Queen’s Univ., Tech. Rep.
2011-582 Rev. 2, 2011.

[13] C. Brun and A. Pierantonio, “Model differences in the Eclipse
modelling framework,” The European Journal for the Infor-
matics Professional, pp. 29–34, 2008.

[14] N. Gold, J. Krinke, M. Harman, and D. Binkley, “Issues in
clone classification for dataflow languages,” in 4th Int. Works.
on Softw. Clones, 2010, pp. 83–84.

[15] M. Harman, “Why source code analysis and manipulation
will always be important,” in 10th Int. Conf. on Source Code
Analysis and Manip., 2010, pp. 7–19.

