
Legacy System Evolution towards
Service-Oriented Architecture

Asil A. Almonaies, James R. Cordy, and Thomas R. Dean

School of Computing, Queens University
Kingston, Ontario, Canada

{almonaies,cordy,dean}@cs.queensu.ca

Abstract. Although Service-Oriented Architecture (SOA) has become
popular in recent years, the majority of legacy systems are still not SOA
enabled. The increase in the amount of information that companies must
handle has resulted in a considerable increase in the complexity of the
legacy systems that store this information. While moving to a service-
oriented architecture platform can help in handling this increase, at the
same time it is important to preserve the investment of many years of
tuning and debugging of the legacy assets as much as possible. Several
techniques exist for modernizing legacy systems towards service-oriented
architecture. In this paper we present a survey of the various approaches
to moving legacy systems to the SOA environment. We discuss the var-
ious approaches and methods and highlight their strengths and weak-
nesses, with an eye to assisting the decision process when undertaking a
new modernization project.

Key words: SOA, legacy systems, wrapping, redevelopment, migration

1 Introduction

Service-oriented architecture (SOA) can be viewed as an architectural construct
for flexible connection of separate components in response to changes in business.
SOA focuses on the exchange of information among major software components
and on the reusability of the components by separating the interface from the
internal implementation. There are several features of SOA that make legacy
system modernization appealing in today’s world, including loose coupling, ab-
straction of underlying logic, agility, flexibility, reusability, autonomy, stateless-
ness, discoverability and reduced costs. The primary purpose for the adoption
of SOA is to improve business communication so that the goals of the enterprise
can be more readily realized.

Chatarji [1] provides a summary of the business advantages of migration to
SOA. Short-term benefits include improving reliability, reducing hardware costs,
leveraging existing development skills and moving to a standards-based server
and applications. An important advantage is providing a data bridge between
incompatible technologies. The long-term benefits are reduced management costs
and the collection of a unified information taxonomy.

In this paper, we provide a critical review of the existing literature in the
area of legacy system modernization strategies to service-oriented architecture.



2 Asil A. Almonaies, James R. Cordy, and Thomas R. Dean

We divide the approaches into four categories: replacement, which rewrites the
existing systems’ applications or replaces it entirely with an off the shelf product,
redevelopment or reengineering, where reverse engineering and reengineering ap-
proaches are used to add SOA functionality to legacy systems; wrapping, which
provides a new interface to existing components to make them easily accessible
as services to other software components; and migration, which moves the legacy
system to the more flexible SOA environment while preserving the original sys-
tem’s data and functionality.

2 Comparison Criteria

We compare the approaches with respect to the following eight criteria:

– Modernization Strategy. The strategy of the proposed approach: one of re-
placement, redevelopment, wrapping and migration. The rest of the paper
is structured based on this criterion.

– Legacy System Type. The kind of system to which the technique applies.
– Degree of Complexity. Time/cost complexity of the method (or NA, if not

reported).
– Analysis Depth. The strategy used to analyze the legacy system to under-

stand its concepts and locate the important functions to be exposed as part
of SOA architecture. The analysis could be shallow or deep depending on
the strategy used. Minimal dependency on the existing legacy system com-
ponents in achieving SOA architecture can provide more flexibility.

– Process Adaptability. How well the process adapts to the legacy system to
minimize the extent of the required modifications.

– Tool Support. To what degree is the process automated, and if a tool is
proposed or implemented.

– Degree of Coverage. Does the proposed approach present a complete strategy
for moving to SOA, or only a specific part of the modernization.

– Validation Maturity. Has the proposed approach been applied and validated.
We classify the proposed approach as an idea, a method demonstrated by a
case study, or a commercially proven technique.

3 Replacement of Legacy Systems

Although replacement is not one of the strategies advocated by the surveyed
papers, it may make sense to retire the application and replace it with an off-
the-shelf package or a complete rewrite of the legacy system from scratch. Two
possible reasons are if the business rules in the application are well understood in
the organization, and the legacy system involves obsolete or difficult to maintain
technologies. An organization may choose the replacement strategy if wrapping,
redevelopment, and migration will impose costs that cannot be justified. Rewrit-
ing the application from scratch is expensive, risky and time consuming, but has
the advantage that it delivers a customized solution that can be built exactly to
meet the organization’s needs.

Commercial off-the-shelf (COTS) systems are ready-made, commercially avail-
able software products. Replacing the application with a COTS component,



Legacy System Evolution towards Service-Oriented Architecture 3

while less risky and time consuming than rewriting, can also be expensive since
future modifications may be difficult and expensive to perform. There are some
cases where a COTS solution may not be a good option: important business are
embedded in the legacy system, modification of the COTS package is expensive,
or the loss of control of the software code base by the organization.

Replacement can take place either by using a “big-bang” strategy or incre-
mentally. If the legacy system has a well defined structure, then it makes most
sense to replace it incrementally. Comella-Dorda et al. [2] identify two significant
risks of the replacement strategy: the maintenance of the new system, which will
not be as familiar as the old system; and the lack of a guarantee that the new
system will be as functional as the original. Given these risks and the reuse goals
of service-oriented systems, in most cases we consider the replacement strategy
for legacy code to be the least desirable solution for migration to SOA.

4 Wrapping Strategies

Wrapping provides a new SOA interface (e.g. WSDL) to a legacy component,
making it easily accessible by other software components. It is a black-box mod-
ernization technique, since it concentrates on the interface of the legacy system,
hiding the complexity of its internals. Wrapping is used when the legacy code
is too expensive to re-write, is relatively small, can be reused, and a fast, cost-
effective solution is needed. Wrapping gives legacy systems the benefits of service
oriented architecture in a quick and a simple manner. If the legacy system has
a high business value and good quality code, wrapping can be a good option.

The main problem is that this strategy does not change the fundamental
characteristics of the legacy applications that are being integrated. Wrapping
will not solve problems already present, such as problems in maintenance and
upgrading. In many cases, studying the internals of the legacy system is impor-
tant and white-box modernization tools are required.

4.1 Overview of wrapping techniques

Sneed [3, 4] discusses a tool-supported method for maintaining legacy code within
an SOA environment. Legacy code is wrapped in an XML shell which allows
individual functions in the programs to be offered as web services. The code
segments that perform a desired service or data modification are identified using
clustering tools and data flow, are extracted, and a new component is built using
them. The new component is given a WSDL interface, and a SOAP framework is
used to package the component. Finally, a proxy is made to link the new services
into the SOA architecture. The technique has been illustrated by wrapping a
COBOL calendar function extracted from the legacy software of a Swiss bank,
and the approach has been applied successfully to the SOA integration of both
COBOL and C++ programs. It is most suitable for smaller programs since
identifying and exposing business functions can be time consuming.

Canfora et al. [5] propose a method to make the interactive functionalities of
legacy systems accessible as Web Services by wrapping them in an SOA interface.
The method provides the legacy system with a request/response interface, where



4 Asil A. Almonaies, James R. Cordy, and Thomas R. Dean

a client invokes a service using a request message and the provider responds with
the required results. The wrapper interprets a Finite State Automaton which
models the interaction between the client and the legacy system. They generate
a wrapper for the email client Pine, which provides an SOA interface to the get
message functionality. In more recent work [6], this wrapping technique is used
as a part of a complete migration process consisting of the selection of the desired
services, wrapping of the selected use cases and deployment and validation of
the wrapped use cases. The main problem with the technique is that most of the
work is done manually, making it difficult to use in industrial solutions.

Stroulia et al. [7, 8] outline an overall process of legacy migration using the
CelLEST method. The user’s interactions with a legacy system are reverse en-
gineered and the task-specific segments of this interaction are wrapped in new
web-accessible front-ends. The process consists of three steps:

1. Collect system-user interaction traces using specially instrumented, non-
intrusive middleware.

2. Reverse engineer the dynamic behaviour of the system interface in terms of
the screens it presents to the user and user navigation through them.

3. Analyze the task-specific navigation paths to extract a model of the user’s
task of interest, in terms of the interface navigation and the information
exchange it implies.

CelLEST has been demonstrated on infoMcGill, a legacy application of McGill
University. The case study was done by a single person familiar with the legacy
system. This is a disadvantage of the approach, since a person familiar with the
legacy code cannot always be found. CelLEST does not require any understand-
ing of legacy code, modeling instead the tasks accomplished by legacy application
users based on traces of their interactions. Although this code-independence is
an advantage, it can be complicated to use the approach when the number of
interactions between the users and the legacy application is large.

In Sneed and Sneed [9], an interface is constructed wrapping the navigation
and execution of a legacy system for a standard web browser. Individual blocks of
code are wrapped and reused as web services using a seven step process: Function
Mining, Function Wrapping, XML Schema Creation, Server Stub Generation,
Client Class Generation, Server Linking, and Web Service Binding. Functions of
the legacy code are extracted based on information provided by the SoftWrap
tool, however there must be a study done before choosing the functions.

4.2 Comparison of the techniques

Table 1 summarizes the wrapping approaches according to our comparison cri-
teria. All the techniques have advantages and disadvantages. However, the ap-
proach presented by Canfora [5] is largely manual, which makes it the least
preferred approach. It is difficult to evaluate the complexity of the approaches,
since all techniques depend a great deal on the size of the legacy system. In
general however the complexity of the wrapping techniques is low, since there is
no deep analysis of the legacy system and only the interface is exposed as web
services.



Legacy System Evolution towards Service-Oriented Architecture 5
	  

	  
	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

Ref. Legacy 
System Type 

Degree of 
complexity Analysis Depth Process 

Adaptability 
Tool 

support 
Degree of 
coverage 

Maturity 
Level 

Sn
ee

d 
[3

,4
] Legacy 

programs 
NA 

Depends on 
business rules in 
the legacy code 

Code 
stripping Automated Complete Case study 

St
ro

ul
ia

 e
t 

al
. [

7,
8]

 

Code 
independent 

Depends on 
the legacy 
application 

User interactions 
with legacy 
application 

(code indep.) 

Model interface 
behaviour of the 
system & users 

Semi-
automated 

Complete Case study 

C
an

fo
ra

 
et

 a
l. 

[5
,6

] Interactive 
legacy system NA 

Use cases of 
legacy app. NA Manual Complete 

Case study 
(Email 
client)  

Sn
ee

d 
&

 
Sn

ee
d 

[9
] Individual 

blocks of code 
NA NA NA Automated Complete Case study 

Table 1. Summary of Wrapping Techniques

5 Redevelopment Strategies

In this study we use the term redevelopment to refer to reengineering approaches.
Reengineering is the analysis and adjustment of an application in order to rep-
resent it in a new form. Reengineering can include activities such as reverse
engineering, restructuring, redesigning, and re-implementing software. The fol-
lowing approaches use reverse engineering and reengineering to add new SOA
functionality to existing legacy systems.

There are three main issues in service-oriented reengineering: service iden-
tification, service packaging, and service deployment. Identification of services
from a legacy system is not an easy task. Software reengineering can play an
important role in migration to the service-oriented environment. It is especially
applicable to legacy systems with the following characteristics:

1. The legacy system needs to be migrated to a distributed environment and
can be wrapped and exposed as a Web Service.

2. The legacy system has embedded reusable and reliable functionality with
valuable business logic.

3. Some of the components in the legacy system are more maintainable than
the whole legacy system.

4. The embedded functionality is useful to be exposed as independent services.
5. Target components need to run on different platforms or vendor products.
6. Some of the legacy components can be replaced gradually without affecting

the service consumer.

5.1 Overview of redevelopment techniques

Chung et al. (2005) [10] describe a project in which a legacy theorem proof
checking and derivation tool called Bertie3 is reengineered to service-oriented
architecture, resulting in a new tool called Service-Oriented Bertie (SoBertie)
that provides the core capabilities of Bertie3 as web services.

Chung et al. (2007) [11] present a service-oriented software reengineering
(SoSR) methodology designed for applying SOA to legacy systems. The SoSR
methodology, a synthesis of best practices, is architecture-centric, service-oriented,



6 Asil A. Almonaies, James R. Cordy, and Thomas R. Dean

role-specific, and model-driven. It is conceptualized from a three service-participants
model, a 4+1 view model, and RACI (responsibility assignment) charts. Al-
though there are no full examples using SoSR as yet, a case study of the pur-
chasing department of a retail store inventory system called GMPO is presented.

Distante et al. [12] present a holistic approach to redesigning legacy appli-
cations for the Web using the Ubiquitous Web Applications Design Framework
(UWA) and an extended version of its Transaction Design Model (UWAT+).
It consists of design recovery technologies for the legacy application and for-
ward design methods for Web-based systems. The process used to produce the
UWA/UWAT+ conceptual design of the new application consists of three steps:
requirements elicitation, reverse engineering, and forward engineering.

Chen et al. [13] use feature analysis to support service-oriented reengineer-
ing. Feature analysis includes identifying system features, constructing a feature
model to organize the identified features, and identifying their implementation
in the legacy system through feature location techniques.

The authors used a library management information system (MIS) in a dig-
ital campus as a case study. The MIS is analyzed using a top-down technique of
domain decomposition and feature analysis. Several services are identified along
with their features. The implementation of the identified services is then gener-
ated by a web services wrapper tool. The tool is able to generate the glue code
for Web Services and the related source code of Web Service methods.

Cuadrado et al. [14] propose a process for recovering legacy system architec-
ture in order to identify the plan to be carried out in modernizing the legacy
system. Theirs is a white-box approach based on modifying the existing legacy
code. It uses a three step process consisting of legacy architecture recovery, cre-
ating an evolution plan, and executing the plan. Architecture recovery supports
the creation of proper documentation. The evolution plan consists of four phases:
architecture selection, definition of evolution cycles, planning of the cycles, and a
preliminary feasibility check. The process is completed by execution of the plan.

5.2 Comparison of the techniques

Table 2 summarizes the characteristics of the redevelopment approaches using
our comparison criteria. For these techniques it was difficult to identify the
degree of process adaptability. While each technique uses a different approach to
identifying the legacy code with business value, all of them provide tool support.
All of the techniques except Chung et al. (2005) [10] provide a case study.

6 Migration Strategies

In migration strategies, legacy code is identified, decoupled, and extracted using
approaches similar to those used in wrapping and redevelopment. User inter-
faces are then reengineered to be compatible with an SOA structure. Migration
strategies incorporate both redevelopment and wrapping and aim to produce a
system with an improved SOA-compatible design. It is not always obvious how to
distinguish migration approaches from wrapping and redevelopment techniques.
Here we use the term migration when referring to any approach which moves
the entire legacy system and its core framework to the new environment.



Legacy System Evolution towards Service-Oriented Architecture 7

	  
	  

	  

	  

	  

	  

	  

	  

	  

	  

Ref. Legacy 
System Type 

Degree of 
complexity Analysis Depth Process 

Adaptability 
Tool 

support 
Degree of 
coverage 

Maturity 
Level 

C
hu

ng
 

et
 a

l. 
 

(2
00

5)
 

[1
0]

 Logic 
derivation 
program 

Moderate Dependent NA Yes Complete 
Proposed 

Idea 
C

hu
ng

 
et

 a
l. 

(2
00

7)
 

[1
1]

 Interactive 
legacy system 

Moderate 
Reverse software 

engineering & 
forward soft. eng. 

Reverse 
software 

engineering 
Yes Complete Case study 

D
is

ta
nt

e 
et

 a
l 

[1
2]

 Windows 
stand-alone 
application 

Time 
consuming 

Design recovery &  
forward design 

methods 

Web transact. 
& navigation 

mode 
Yes Complete Case study 

C
he

n 
et

 a
l. 

 [1
3]

 Technical 
environ. Dependent 

Source code 
identification NA Yes Complete Case study 

(Lib. MIS)  

C
ua

dr
ad

o 
et

 a
l. 

[1
4]

 

Dependent Dependent 
Detailed 

description of 
legacy system 

NA 

Eclipse 
TPTP & 
Omondo

UML 

Complete 
Case study 
(Medical 

imaging sys.) 

Table 2. Summary of Redevelopment Techniques

6.1 Overview of migration techniques

Aversan et al. [15] present a case study in which a COBOL system is migrated
to a web-based service oriented architecture. The legacy system is divided into
user interface and server (application logic and database). The user interface
is migrated to a Web browser shell using Microsoft Active Server Pages and
the VBScript scripting language and the MORPH approach has been used to
map the components of the existing interface onto the new Web based inter-
face. The server is wrapped and integrated into the new web-enabled system
with dynamic load libraries written in Microfocus Object COBOL, loaded into
Microsoft Internet Information Server (IIS), and accessed by the ASP pages.

O’Brien et al. [16] present a strategy that identifies and uses legacy compo-
nents as services. Architecture reconstruction is used to identify dependencies
between components for migration to services and thus provide an organization
with a better understanding for their decision-making process.

Lewis et al. [17, 18] and Smith [19] discuss a migration technique called the
Service-Oriented Migration and Reuse Technique (SMART) that helps organiza-
tions analyze legacy systems to decide whether their functionality can reasonably
be exposed as services in a Service-Oriented Architecture (SOA). SMART con-
siders the specific interactions that will be required by the target SOA and any
changes that must be made to the legacy components. It gathers a wide range
of information about legacy components, the target SOA, and potential services
to produce a service migration strategy as its primary artifact.

Z. Zhang et al. [20] propose a reengineering approach that applies a hierar-
chical clustering algorithm to understand the legacy code in order to extract it
for web service construction. The clustering technique is used to extract inde-
pendent services from legacy code. The technique supports service identification
and packaging, providing functional legacy code as web services.

J. Zhang et al. [21] discuss a current project on the design and development of
pass-through authentication (PTA) web-services for on-line electronic payment
applications. The application is an on-line synchronous/asynchronous payment



8 Asil A. Almonaies, James R. Cordy, and Thomas R. Dean
	  

	  

Ref. 
Legacy 

System Type 
Degree of 

complexity 
Analysis  

Depth 
Process  

Adaptability 
Tool 

support 
Degree of 
coverage 

Maturity 
Level 

A
ve

rs
an

o 
et

 a
l. 

[1
5]

 
COBOL 
Program 

NA Static analysis 
Legacy 

programs essentially 
unchanged 

Yes Complete 
Pilot 

project 

O
'B

rie
n 

et
 a

l. 
[1

6]
 

System 
Independent 

NA Architecture 
Reconstruction 

Information on 
legacy system is 
gathered, legacy 

code is unchanged 

Yes 

Identification 
& reuse of 

legacy compon. 
as services 

Case Study 
On  C++ 

Code 

Le
w

is
 e

t 
al

. [
17

,1
9]

 
Sm

ith
 [1

8]
 

Program 
Independent 

Depends 
on legacy 

system 

Architecture 
reconstruction & 

detailed analysis of 
the target SOA 

Legacy system 
characteristics, 

architecture, and 
code is gathered 

Yes Complete 
Set of 

Guidelines 

Zh
an

g 
 e

t a
l. 

[2
0]

 Object-
oriented 
program 

NA 
Hierarchical 
clustering to 

identify services 

Domain analysis is 
used to identify the 

business logic 
Yes Complete Case Study 

Zh
an

g 
 

et
 a

l. 
[2

1]
 Legacy e-

Payment 
systems 

NA 
Original legacy 

system integrated 
into target system 

NA NA Complete Case Study 

C
et

in
 

et
 a

l. 
[2

2]
 Program 

Independent 
NA 

Legacy system is 
analyzed 

If change is needed, 
legacy components 

modified or replaced 
Yes Complete Case Study 

M
ar

ch
et

to
 

&
 R

ic
ca

 
[2

3]
 Java 

Application 
Moderate 

UML Use Case 
diagram 

The internal 
structure can be 

changed if needed 
Yes Complete Case Study 

Table 3. Summary of Migration Techniques

processing application that can perform real-time or batched payment transac-
tions. Although this approach exposes business logic in legacy code as services,
the main concern is not to achieve SOA architecture, rather to expose the legacy
system’s functionality as web services.

Cetin et al. [22] propose a mashup migration strategy, addressing both the
behavioural and the architectural aspects of the migration process. Their method
consists of six steps: model the target enterprise business requirements; analyze
the existing legacy system; map the target enterprise model to legacy compo-
nents and identify services; design a concrete mashup server architecture; define
service level agreements; and implement and deploy services. The main idea is
the integration of the the legacy system at the presentation layer, which requires
re-inventing the popular mashup technology of Web 2.0 at the enterprise level.

Marchetto and Ricca [23] present a stepwise approach for Java where one
candidate service is migrated to a Web service in each migration step. The goal
of their approach is to obtain a “preliminary” service-oriented implementation
of the original system, not necessarily the “best one”.

6.2 Comparison of the techniques

Table 3 summarizes the migration approaches according to our comparison cri-
teria. Each of the migration techniques uses a different method to achieve the
result. All the techniques provide a case study to support their claims, except
for SMART [17, 19, 18], which is introduced as a set of guidelines to direct the
process of migration. Since SMART is legacy system independent, it could be
used in any of the other techniques to evaluate the legacy system involved in



Legacy System Evolution towards Service-Oriented Architecture 9

Strategy Advantages Disadvantages

Replacement
Reduce maintenance Time consuming

Improve business functions Expensive
Experienced resources needed

Wrapping
Fast Inflexible

Difficult maintenance

Redevelopment
Increase agility Source code needed

Flexibility Original requirements needed
Reduced cost

Migration
Stable environment Time consuming
Tools availability Experienced resources needed

Source code needed

Table 4. Summary of modernization strategies

the migration. While the benefits of the migration strategy seem to be well un-
derstood, there is still no general migration technique that can be applied that
solves all of the problems that a developer may face.

7 Choosing A Strategy

When choosing a strategy, a variety of aspects come into play. Table 4 summa-
rizes an initial set of strengths and weaknesses for each strategy. Other possible
aspects might include the type of company that owns the software and the kind
of stakeholders that use the systems.

Two or more modernization strategies can be combined to achieve the re-
quired goal depending on the advantages and disadvantages of each strategy in
the context. It is not always easy to reuse legacy system components and expose
them as services. In some situations, exposing them as services will have a higher
risk and a higher cost than replacing them entirely with a new SOA architecture.
There is no perfect solution to the problem of modernizing a legacy system. The
choice of strategy depends entirely on the goals for the SOA architecture, the
available budget and resources and the time needed to complete the project.

8 Conclusions

While modernizing legacy systems for service-oriented architecture has clear po-
tential benefits, it is important to choose the appropriate modernization strategy.
In this study, we have reviewed the four main approaches in the literature for
migrating legacy systems to SOA: replacement, wrapping, redevelopment and
migration, and highlighted the major techniques of each kind described in the
literature. While no one approach applies to every situation, by comparing the
maturity, applicability, strengths and weaknesses of each of them, we can better
understand how to choose among strategies for any given project.

Several future directions are worth investigating. The main challenge in mod-
ernizing a legacy system is finding the business services in legacy code, and there
is a need for better tools and techniques to identify business value in large code
bases. There is a need for objective metrics to evaluate the techniques, and most
approaches do not discuss measuring the quality attributes of the resulting ser-
vices, such as security, performance and reliability. Finally, while web services is
one technology to implement SOA, it would interesting to examine others.



10 Asil A. Almonaies, James R. Cordy, and Thomas R. Dean

References

1. J.Chatarji: Introduction to service-oriented architecture (SOA) (2004)
2. Comella-Dorda, S., Wallnau, K.C., Seacord, R.C., Robert, J.E.: A survey of black-

box modernization approaches for information systems. In: ICSM. (2000) 173–183
3. Sneed, H.M.: Integrating legacy software into a service oriented architecture. In:

CSMR. (2006) 3–14
4. Sneed, H.M.: Wrapping legacy software for reuse in a SOA. Technical report (2005)
5. Canfora, G., Fasolino, A.R., Frattolillo, G., Tramontana, P.: Migrating interactive

legacy systems to web services. In: CSMR. (2006) 24–36
6. Canfora, G., Fasolino, A.R., Frattolillo, G., Tramontana, P.: A wrapping approach

for migrating legacy system interactive functionalities to service oriented architec-
tures. J. Systems and Software 81(4) (2008) 463–480

7. Stroulia, E., El-Ramly, M., Sorenson, P.G., Penner, R.: Legacy systems migration
in CelLEST. In: ICSE Posters. (2000) 790

8. Stroulia, E., El-Ramly, M., Sorenson, P.G.: From legacy to web through interaction
modeling. In: ICSM. (2002) 320–329

9. Sneed, H.M., Sneed, S.H.: Creating web services from legacy host programs. In:
WSE. (2003) 59–65

10. Chung, S., Young, P.S., Nelson, J.: Service-oriented software reengineering: Bertie3
as web services. In: ICWS. (2005) 837–838

11. Chung, S., An, J.B.C., Davalos, S.: Service-oriented software reengineering: SoSR.
In: HICSS-40. (2007) 172c

12. Distante, D., Tilley, S.R., Canfora, G.: Towards a holistic approach to redesigning
legacy applications for the web with uwat. In: CSMR. (2006) 295–299

13. Chen, F., Li, S., Chu, W.C.C.: Feature analysis for service-oriented reengineering.
In: APSEC. (2005) 201–208

14. Cuadrado, F., Garćıa, B., Dueñas, J.C., G., H.A.P.: A case study on software
evolution towards service-oriented architecture. In: AINA. (2008) 1399–1404

15. Aversano, L., Canfora, G., Cimitile, A., Lucia, A.D.: Migrating legacy systems to
the web: An experience report. In: CSMR. (2001) 148–157

16. O’Brien, L., Smith, D.B., Lewis, G.A.: Supporting migration to services using
software architecture reconstruction. In: STEP. (2005) 81–91

17. Lewis, G.A., Morris, E.J., Smith, D.B.: Analyzing the reuse potential of migrating
legacy components to a service-oriented architecture. In: CSMR. (2006) 15–23

18. Lewis, G.A., Morris, E.J., Smith, D.B., O’Brien, L.: Service-oriented migration
and reuse technique (smart). In: STEP. (2005) 222–229

19. Smith, D.B.: Migration of legacy assets to service-oriented architecture environ-
ments. In: ICSE Companion. (2007) 174–175

20. Zhang, Z., Yang, H.: Incubating services in legacy systems for architectural mi-
gration. In: APSEC. (2004) 196–203

21. Zhang, J., Chung, J.Y., Chang, C.K.: Migration to web services oriented architec-
ture: a case study. In: SAC. (2004) 1624–1628

22. Cetin, S., Altintas, N.I., Oguztuzun, H., Dogru, A.H., Tufekci, O., Suloglu, S.:
Legacy migration to service-oriented computing with mashups. In: ICSEA. (2007)
21c

23. Marchetto, A., Ricca, F.: From objects to services: toward a stepwise migration
approach for java applications. STTT 11(6) (2009) 427–440


