
Recovering Role-based Access Control Security
Models from Dynamic Web Applications

Manar H. Alalfi, James R. Cordy, and Thomas R. Dean

School of Computing, Queens University
Kingston, Ontario, Canada

{alalfi,cordy,dean}@cs.queensu.ca

Abstract. Security of dynamic web applications is a serious issue. While
Model Driven Architecture (MDA) techniques can be used to generate
applications with given access control security properties, analysis of
existing web applications is more problematic. In this paper we present a
model transformation technique to automatically construct a role-based
access control (RBAC) security model of dynamic web applications from
previously recovered structural and behavioral models. The SecureUML
model generated by this technique can be used to check for security
properties of the original application. We demonstrate our approach by
constructing an RBAC security model of PhpBB, a popular internet
bulletin board system.

1 Introduction

Models provide a formal basis to specify various properties of software, such
as access control properties. When the application is later generated from the
model, developers have a reasonable expectation that these properties will be
implemented in the software. However, determining the access control properties
of an existing software application is a non-trivial task. We can try to verify the
properties directly on the source code, or we can recover a model from the
code that is amenable to analysis. One particular area of interest is dynamic
web applications, which are often designed to interact with the general public
and thus are directly accessible to a wide variety of attackers. In many current
web applications, access control policies are spread throughout the application,
making understanding and maintaining them a difficult task [1].

Security and vulnerability analysis of dynamic web applications is not new.
Pistoia et al. [2] survey a variety of techniques that check for vulnerabilities such
as SQL injection and cross site scripting. Alafi et al. [3] present a comprehensive
survey of models and methods for web application verification and testing. They
found that while models were built to analyze static and dynamic properties of
the system, none of the surveyed techniques were able to model or check the
access control policies of dynamic web applications.

In this paper we use TXL [4], a source transformation tool, to transform
previously recovered structural and behavioral models [5, 6, 7, 8] to a role-based
access control (RBAC) [9] model. The target model, a SecureUML [10] model
expressed in XMI 2.1, can then be used to check that the desired access control
properties are correctly implemented in the code. TXL is a source transformation

2 Manar H. Alalfi, James R. Cordy, and Thomas R. Dean

language originally used at the source code level, but recently shown to be useful
in transforming models [11, 12]. Such transformations are applicable to large
models, including heterogeneous models that integrate components in a variety of
languages. Using source transformation techniques allows us to integrate diverse
models, to map platform-independent models to platform-specific ones, and to
handle other tasks that involve dealing with multiple meta-models at once.

The key contributions of this paper are:
– An approach and tool to automatically recover security models from dynamic

web applications using source transformation technology.

– A demonstration of the approach to recover a role-based security model from
a widely used real world web application, PhpBB.

This paper is organized as follows: Section 2 introduces PhpBB as a running
example used to demonstrate our technique and explains why it is an appropriate
choice. We give an overview of our reverse engineering approach to recovering
security models from a dynamic web applications in Section 3. The construc-
tion of a SecureUML security model from recovered structural and behavioral
models is presented in Section 4. Section 5 highlights the advantages of the
transformation-based approach in considering the correctness and completeness
of the recovered models. Section 6 reviews related work, and Section 7 concludes
the paper and presents directions for future work.

2 Running Example

We demonstrate our technique on PhpBB 2.0 [13], an internet bulletin board
system used as a running example throughout the paper. Our focus is on recov-
ering security models from production web applications, whose recovered models
are much too large to show in a paper. Hence we show only snippets of the re-
covered models and concentrate on only three roles to illustrate our approach.
In practice our method efficiently recovers complete RBAC models for multiple
roles from production dynamic web applications of any size.

Our present implementation, or rather the front end that recovers the struc-
tural and behavioral models, is designed to handle web applications built using
Apache, PHP and MySQL. Our choice of this combination is based on the pop-
ularity and predominance of these technologies on the web [14, 15, 16]. While
we have thus far concentrated on these technologies, our overall approach is not
technology dependent and can be extended to other choices as well. The security
model construction approach of this paper is also not limited to automatically
recovered models. It can be used to construct security models from any struc-
tural and behavioral models that conform to the meta-models provided in Figure
2, including those crafted by hand or using MDA authoring tools.

3 Overview

Figure 1 shows the general framework of our technique to convert the structural
and behavioral models into a SecureUML security model. The work described in

Recovering RBAC Security Models from Dynamic Web Applications 3

UML2.0
Sequence
Diagram

UML2.0
ER

Data Model

DWASTIC

SQL2XMI

Entities

Entities
Attributes &

Relations

Secure
Resources

Constrained
Events

on entities

Constrained
Permissions

XMI 2.0
Grammar

Extraction &
Mapping Rules

Grammar
Overrides

TXL Program

Extraction & Filtration!

Match & extract!

Identify & Extract!

Map & Construct!

Map & Construct!

Role

0..n

0..n

SecureUML
Model

Elements

PHP2XMI&
WAFA

UML2.0
SecureUML

Model

Combine and Construct!

Fig. 1. PHP2SecureUML Framework

this paper is part of a larger toolset to analyze role-based access control which
begins with automated recovery of structural and behavioral models described
in detail elsewhere [5, 6, 7, 8]. The lower left (SQL2XMI) represents our au-
tomated recovery of the structural model (represented by an ER Data Model)
from the application’s schema source, while the upper left (PHP2XMI, WAFA,
DWASTIC) represents the automated recovery of the application’s behavioral
model (represented by a sequence diagram) using a combination of static and dy-
namic analysis. In this section we give a brief overview of the reverse engineering
of these models, which is described in full in other papers.

The remainder of Figure 1 describes the model transformation process which
is the subject of this paper. We begin by building a dictionary of of the entities
that will form the core of the security model. We use this dictionary of entities
to identify the attributes, relations and constrained events affecting them in the
recovered models. These are then mapped to a SecureUML security model, an
example of which is shown in Figure 5. This transformation process is presented
in detail in Section 4.

The model recovery process begins with a static analysis to recover a struc-
tural model of the application resources as they pertain to the user’s use of
systems, applications and business processes. While UML is considered the stan-
dard for application modelling, there is no corresponding open standard for data
modeling. SQL2XMI [6] is the technique we use to automatically transform an
SQL DDL schema to a UML 2.1 ER diagram. The top part of Figure 2 shows the
meta-model for the recovered UML-ER data model representing the structure
of the application.

The second part of the model recovery uses a combination of static and
dynamic analysis to recover a behavioral model of the application (Figure 2).
A set of three tools, PHP2XMI [5], WAFA [8] and DWASTIC [7] is used to
recover this model. First, PHP2XMI uses source transformation to instrument
the code and exercises it to recover the permissions associated with each user
role, representing the result as a UML sequence diagram.

4 Manar H. Alalfi, James R. Cordy, and Thomas R. Dean

<<Entity>>

<<Relation>>

<<Attribute>>

<<FK>><<PK>>

ownedAttribute

associationtype

memberEnd

0..n

2..n

0..n0..1

Name: ColumnName
Type: ColumnID

Name: TableName

Our UML 2.0 ER Data Model

<<stereoty

SecureUML meta-model

Operation
(from Kernel)

1 *
SendOperationEvent

constraintParameter

ownedParameter **

Class
ownedOperation

Association class

<<stereotype>>

UML 2.0 Sequence
diagram meta-model

preconditions

ype>>

*

*
*

+/owned
Element

+/owner
0..1

Element
(from Kernel)

+/ownedComment

0..1

Comment
(from Kernel)

NamedElement
(from Kernel)

name: String
visibility: VisibilityKind

(from Kernel)

Signal
(from Communications)

+/signature

TypeElement
(from Kernel)

Type
(from Kernel)

0..1

+/type

1 * SendSignalEvent

SendOperationEvent

0..1 0..1

MessageEnd

MessageEvent
(from Communications)

1

+start +finish

MessageOccurrence
Specification

Execution
Specification

ExecutionOccurrence
Specification

* *

ConnectableElement
(from InternalStructures)

ConnectorEnd
(from InternalStructures)

*

1

+/represents
0..1

*

ValueSpecification

2..*

Connector
(from InternalStructures) 0..1

*

+argument*

0..1 0..1

+send
Event

+receive
Event

Message
/messageKind: MessageKind
messageSort: MessageSort

Event
(from Communications)

1

Occurrence
SpecificationLifeline

Fig. 2. UML2.0 Structural and behavioral meta-models and their mappings to the
SecureUML [10] meta-model.

This sequence diagram is then extended by WAFA, which recovers a fine-
grained interaction model from the application. From the point of view of user
interaction, the secured resources are represented by lifelines for the web pages
delivered by the application. The diagrams operations are used to map the differ-
ent type of access allowable to the user over the applications secured resources.
All aspects of this access are captured as either operations parameters or con-
straints. These include the accesss type, timestamp, condition, return value, and
unique id. The unique id is to identify the accesss relation with the source code
and the source page. Message names encode a combination of these values in a
single string. The lower part of Figure 2 shows the recovered elements (shaded)

Recovering RBAC Security Models from Dynamic Web Applications 5

Fig. 3. A snippet of the recovered ER data model diagram for PhpBB 2.0

based on the UML sequence diagram meta-model. The black dashed line repre-
sents the relation between the recovered sequence and ER diagrams, where each
entity in the ER diagram (secure resource) is mapped to a class in the sequence
diagram represented as a lifeline.

Because our behavioral model recovery uses dynamic analysis to explore the
behavior of the application, a measure of completeness for the recovered behav-
ioral model is required. For this purpose, we have developed DWASTIC, a tool
that augments the dynamic analysis with additional code coverage instrumen-
tation. DWASTIC uses several coverage criteria specialized for web applications
to help ensure that all pages and potential interactions are explored. It provides
a direct way to trace those parts of code that are not covered by test cases,
and serves as a coverage measure for extraction of the access control security
model. The accuracy of the results is both hand verified and robust since it is
automatically back-checked at run time.

6 Manar H. Alalfi, James R. Cordy, and Thomas R. Dean

Fig. 4. A snippet of the UML2.0 Entity-level sequence diagram for PhpBB 2.0 gener-
ated by WAFA and PHP2XMI

4 SecureUML Model Construction

In the previous section we briefly outlined how SQL2XMI, WAFA and PHP2XMI
help us to recover UML-based structural and behavioral models from web ap-
plications, and how DWASTIC provides a measure of coverage. In this work
we use the relevant elements of these two recovered models to construct a role-
based (RBAC) security model that conforms to the SecureUML [10] meta-model
(middle of Figure 2).

SecureUML is an implementation of the Model Driven Security approach,
a specialization of Model Driven Architecture. It explicitly integrates security
aspects into the application’s models and provides support for model trans-
formation. The approach has been proposed to bridge the representation gap
between the graphical languages used for specifying application design models,
such as UML, and the textual languages used to specify security models. It is
built on a modular schema that comprises three basic elements: a language for
security policy specification; a language for design model construction; and a di-
alect for defining integration points in these two languages. The abstract syntax
for SecureUML is based on role-based access control (RBAC) [9]. It defines a
meta-model that extends RBAC with authorization constraints to enable formal
specification of access control policies that depend on dynamic aspects of the
system, such as the access date or the values of the system’s environment vari-

Recovering RBAC Security Models from Dynamic Web Applications 7

<<Permission>>
AnonymousPerm

ViewFs(): Forum
ViewTs(): Topics
ViewTPosts():Posts
Register():String

<<Permission>>
RegisteredPerm

RPostReply: Posts
EditSelfPost(): Posts
DeleteSelfPost()::Posts
AddPoll: Posts
SubmitVote(): Posts
Logout():Forum

<<Entity>>
Forum

ForumID: int

<<Entity>>
Topics

TopicID: Int

<<Entity>>
Posts

PostID: int

<<User>>
Bob

<<User>>
Alice

<<Role>
Anonymous User

<<Role>>
Registered User

SessionID: String

<<Subject Assignment>>

<<Subject Assignment>>

Fig. 5. An example SecureUML model

ables. The modeling notation for SecureUML is based on a UML profile that uses
UML stereotypes and tagged values to represent the abstract syntax elements in
the meta-model schema. Users, groups, and roles are represented as classes with
stereotypes � User �, � Group � and � Role � respectively, and permission
is represented as an association class with a � Permission� stereotype.

Figure 5 shows an example of a SecureUML model for a web forum applica-
tion. The diagram shows two users in different roles who are permitted different
sets of actions based on their roles. Bob, who is an anonymous user, is per-
mitted to access the forum entities using read operations. So, Bob can access a
forum via ViewForum(), read a forums’ topics via ViewTopic(), read topic posts
via ViewTPosts(), and can register in a forum. Alice, who is a registered user
of the forum, can not only perform all the operations available to Bob but is
also permitted write access to the forum. Thus, she can also reply to posts via
RPostReply(), edit her own posts using EditSelfPost(), and so on.

Our work defines a mapping from the recovered structural and behavioral
meta-models to the target SecureUML meta-model which forms the basis of
our transformation. Figure 2 shows the relationship between the UML-sequence
diagram meta-model and our UML 2.0 data meta-model. The Entity element
in the UML data meta-model corresponds to the Class element of the sequence
diagram meta-model via a stereotype relationship, represented as a dotted line in
the figure. Based on this relationship, the structural information for each entity
in the sequence diagram can be pulled from the data model.

We implement this phase as a model transformation encoded as a sequence
of source transformations in TXL [4]. Although the model transformation pro-
cess accepts models as an input and generates models as output, where each of

8 Manar H. Alalfi, James R. Cordy, and Thomas R. Dean

these conforms to a specific meta-model and reflects a particular view of the sys-
tem, we can implement the transformation process between source and target
models as a source-to-source transformation as long as they can be serialized
into a text-based format. Fortunately, this can be easily done by most modeling
tools, including ArgoUML and RSA, using the XMI export and import facility.
While modeling tools often use different versions of XMI, TXL grammars can
be adapted to accept and manipulate a range of XMI versions, and can generate
multiple versions of the serialized models to match a range of modeling tools.

4.1 Entity Extraction and Filtration

The set of classes (entities) in the sequence diagram is the abstract represen-
tation of the diagram’s lifelines and maps to the application’s secure resources,
which include the application server, browser session, and database-backend en-
tities. In this first step these elements are identified and filtered to remove any
redundancies, using source transformation.

We have developed a TXL grammar for XMI schemas which enables the ma-
nipulation of models that conform to the UML sequence diagram (SD), UML-
based ER diagram and SecureUML meta-models. The process accepts as input
a serialization of both the SD and ER models, and uses a rooted set of source
transformation rules to enable the model’s manipulation, integration and trans-
formation to construct the target security model.

The transformation begins by searching for the set of secure resources that
are engaged in the interaction behavior modeled by the SD. These elements are
represented abstractly as a set of classes, and graphically as a set of lifelines.
The corresponding source transformation rule (Figure 6) matches all SD class
elements in the XMI representation and filters out any redundant ones. Redun-
dancies can occur due to the fact that multiple secured resources receiving the
same set of actions are represented as a single class and modeled using a single
lifeline. The names of these resources are combined into a single string which rep-
resents the class name. Thus the transformation rule must refactor the combined
string to identify the names of the corresponding secure resources.

Figure 4 presents a snippet of a recovered sequence diagram showing the
results of the the first step of our approach, the list of entities engaged in the
interaction. Some of the entities shown in the diagram snippet are:

{phbbb forums, phpbb auth access, phpbb user group,
phpbb users,BrowserSessions,ApplicationServer}.

Note that the set of entities representing the third lifeline has been re-factored
into separate entities.

4.2 Entity Attribute and Relation Extraction

Once the set of secure resource elements engaged in interaction behavior has
been identified, another source transformation rule is applied to each of the
identified elements (Figure 7). This subrule consults the UML ER diagram to
search for structural information relevant to those elements, including attributes
and relations with other resources.

Recovering RBAC Security Models from Dynamic Web Applications 9

% Search for class elements in the sequence diagram
deconstruct PackagedElement

’< ’packagedElement ’xmi:type = XmiType [stringlit]
’xmi: ’id = ClassID [stringlit]
’name = ClassName [stringlit] ’>
owndOp [repeat XMItoken]

’</ ’packagedElement ’>
where

XmiType [= "uml:Class"] [= "uml:Actor"]

Fig. 6. A small part of the TXL rule to extract class elements from the behavioral
model sequence diagram. This pattern matches all Class and Actor elements in the
XMI 2.0 representation of the recovered sequence diagram for the web application.

% Search the structural model for a matching Entity description
% for the EntityName extracted from the behvioural model
match * [repeat XMItoken]

’< ’packagedElement ’xmi:type = "uml:Class"
’xmi: ’id = EntityName ’name ’= ClassName [stringlit] ’>
owndAttrib [repeat XMItoken]

’</ ’packagedElement ’>
More [repeat XMItoken]

% Extract the entity’s owned attributes
construct OwnedAttribElements [repeat owned Attribute]

_ [^ owndAttrib]

% And its owned attribute relations
construct OwnedAttribRelElements [repeat owned AttributeRel]

_ [^ owndAttrib]

Fig. 7. A small part of the TXL rule to extract the attributes and relations associated
with each entity from the structural ER data model. This pattern matches the ele-
ments in the XMI 2.0 representation of the recovered structural diagram for the web
application corresponding to the entities extracted from the behavioral model.

Conceptually, the transformation rule searches for all class elements with the
Entity stereotype in the ER model that matches one of the entities identified in
the previous section. It extracts the entities’ attribute elements and associations
with other entities in the identified set. The result of this phase is an ER diagram
of the secure resources engaged in interactions in a particular browsing session.

In our running example, the set of entities extracted in the previous step
is used to extract the entities’ attributes and relations from the recovered ER
diagram of the system, a snippet of which is shown in Figure 3. This step is
necessary so that Entities, attributes and relations not relevant to the target
security model (i.e., not involved in the interactions) are filtered out and not ex-
tracted. Thus the {Topic, Post} entities, in the ER diagram (Figure 3) and their
attributes and relations will not be included in the artifacts used to construct
the diagram representing the secure resources.

As an example, some of the attributes and relations extracted by this step for
the phpbb forums entity are: {<< PK >> forum id, cat id, forum name}, and the
association attribute between phpbb forums and phpbb auth access. Note that
relations between phpbb forums and phpbb topics, phpbb posts are not recovered
because they are not part of the interactions described in our example.

10 Manar H. Alalfi, James R. Cordy, and Thomas R. Dean

% Identify and extract operation elements corresponding to
% extracted secure resources
deconstruct ownedOp

’<’ownedRule ’xmi:type ’= "uml:Constraint"
’xmi:id ’= ConsID [attvalue]
’name ’= AcName [attvalue]
’constrainedElement ’= ConstElm [attvalue] ’>

<’specification ’xmi:type ’= "uml:OpaqueExpression"
’xmi:id ’= ConsExprID [attvalue]
’name ’= ConsExprName [attvalue] ’/’>

’</’ownedRule’>
ownedOp2 [repeat XMItoken]

Fig. 8. A small part of the TXL rule to extract operation elements corresponding
to identified resources from the recovered behavioral model sequence diagram. This
pattern matches ownedRule elements in the XMI 2.0 representation of the recovered
sequence diagram corresponding to each secure resource identified in the previous step.

4.3 Constrained Event Extraction

The set of permissions allowed on each of the recovered entities (i.e., secure
resources) is modeled as the message receive events of the corresponding lifeline.
Each recipient event element in the sequence diagram meta-model is represented
as an operation which may be associated with parameters and constraints. The
next source transformation rule receives as a parameter the set of recovered
resources, matches the elements of the serialized sequence diagram, and whenever
a class with the same resource name is matched, identifies and extracts the set of
all operation elements associated with the class, along with its parameters and
constraints (Figure 8).

The rule then constructs the meta-model elements of SecureUML to repre-
sent the recovered permissions. Each operation element and its parameters is
mapped to a permission action, and operation constraints are mapped to au-
thorization constraints. The rule constructs an association class to represent the
set of recovered operations for each specific resource. The association class is
marked as a permission stereotype to reflect its security semantics.

For each entity in the resulting secure resources diagram of the previous step,
the set of actions, action constraints and other relevant parameters are extracted.
For instance, for the phpbb forum entity, these artifacts are:

Action : Select(allattributes).
Constraint(forum id = $forum id).
T imestamp(1247604868).
ActionIdInCode(viewForum, 366).

where viewForum is the page name and 366 the operation ID in the source code.

4.4 SecureUML Model Element Construction

The previous steps have identified all the security elements necessary to construct
the RBAC security model. In this step, we construct a security model that con-
forms to the SecureUML meta-model shown in Figure 2. A set of transformation
rules is used to construct the security model, in which the extracted sequence
diagram’s operations are mapped into permissions, operation constraints into
authorization constraints, and the entities of the ER data model into resources.

Recovering RBAC Security Models from Dynamic Web Applications 11

In the SecureUML notation, the representation of resources is left open, so
that developers can decide later which elements of the system they consider se-
cure and to which they want to apply access constraints. These elements are
defined using a dialect. In section 4.2, we identified the secure resources and
represented them as an ER diagram. In section 4.3, we recovered the permission-
action pairs and authorization constraints, and represented them as an associa-
tion class with parameters and preconditions. Using a final TXL transformation
rule, two association links are created: one that connects the association class,
stereotyped by permissions, with the entity (resource) affected by the permis-
sion’s actions; and a second that connects the acting role with the constructed
association class.

In our running example, Figure 9, shows snippets of the resulting SecureUML
model. For instance, an association class with name phpbb forum is constructed
with permission stereotype and attached to the entity forum, and the browser
session entity represents the user role accessing the forum. The final result is
a complete SecureUML model of the web application which can be checked for
security properties using a standard model checker or custom analysis. In our
case, the resulting SecureUML model is transformed once again into a Prolog
formal model checked using Prolog rules to find potential access role violations.

5 Correctness and Completeness of the Recovered Model

One of the advantages of using a formal source transformation system for deriv-
ing and exploring security models from source code is that it is easier to reason
about completeness and correctness of the tools. By contrast with a hand-coded
analyzers implemented in Java or C, source transformation rules can be tested
and verified piecewise.

Because source transformations are based on parsing technology, the well-
formedness of the results is guaranteed. TXL transformation rules are simply
incapable of producing a result that does not conform to the syntactic forms of
the target grammar/metamodel. The question of the semantic soundness of the
constructed security model is also made simpler using a source transformation
technique. Rather than having to reason about an entire hand-coded analysis
program all at once, each TXL source transformation rule can be considered
independently of the others. Whether the entire transformation is correct then
becomes just a question of whether the set of rules forms a complete transforma-
tion, which can be checked separately. In our system this question is addressed by
separating the process into a sequence of separate source transformation steps.
Because each step yields a concrete intermediate text file representation that the
next step parses as input, erroneous or incomplete results of a step are typically
caught immediately by the next step. For example, if the data model extracted
from the web application’s schema is missing anything, there will be unresolved
links when integrating the models that will make this fact immediately evident
in the next transformation step.

Using source transformation rules to analyze the schema, source code and
behavioral models also assists in guaranteeing completeness. For example, the

12 Manar H. Alalfi, James R. Cordy, and Thomas R. Dean

TXL parser syntactically identifies all references to the SQL database in the
source code, and the transformation rule for analyzing them simply transforms
them to an instrumented form. The question of whether we have missed any
database interactions in the extracted model is therefore easy to evaluate, simply
by counting the number of SQL interactions in the model and comparing it to the
number identified by the parser in the source. Dynamic behavioral completeness
is handled by including coverage counters in the instrumentation, implemented
using the DWASTIC tool discussed in section 3.

Our approach has been validated in a case study to extract and explore a
complete RBAC security model from PhpBB 2.0 [17]. The resulting model is
transformed into a formal Prolog model and checked for security properties. We
are also working on validating the approach on a larger case study, recovering
the RBAC security model from the educational support web application Moodle.

6 Related Work

Most of the early literature on web application security concentrates on the
process of modeling the design of the web applications. It proposes forward
engineering-based methods designed to simplify the process of building highly
interactive web applications [18, 19, 20, 21]. Other research uses reverse engi-
neering methods to extract models from existing web applications in order to
support their maintenance and evolution [22, 23, 24], However, few approaches
recover security models from web applications, and in particular access control
security models. Alalfi et al [3] survey the state of the art of these techniques.

The most relevant related approach in this domain is the Letarte and Merlo
approach [25] which uses use static analysis to extract a simple role model from
PHP code, and more specifically from database statements. Changes in autho-
rization level in the code are modeled using an inter-procedural control flow
graph with three type of edges: positive-authorization (change to the admin),
negative -authorization (change to user), and generic (no change in security
level). A predefined authorization pattern is used to identify transfer of control
in the code and changes in authorization level in the extracted model. Unlike our
approach, the Letarte and Merlo approach simplifies to only two roles (admin vs.
user) for which access may or may not be granted to database statements. The
model is based on an application-dependent authorization pattern and does not
provide any link back to the source code Other approaches have been proposed
to recover models and/or to check for access control properties for domains other
than web applications, with a focus on Java based applications.

Koved et al. [26] use context sensitive data and control flow analysis to con-
struct an Access Right Invocation graph, which represents the authorization
model of the code. This enables identification of classes in each path that con-
tain a call to the Java 2 security authorization subsystems. The approach is used
to automatically compute the access rights requirements at each program point
in mobile Java applications such as applets and servlets.

Pistoia et al. [2] statically construct a call graph to represent the flow of au-
thorization in an application by over-approximating method calls and identifying

Recovering RBAC Security Models from Dynamic Web Applications 13

Fig. 9. An example generated SecureUML model instance for PhpBB 2.0

access-restricted methods. The graph is used as the basis of several security anal-
yses, including detecting if the application’s RBAC security policy is restrictive
or permissive. The authors generate reports on code locations that have incon-
sistencies and suggest a replacement policy to eliminate the vulnerabilities. The
approach is implemented as a part of IBM’s Enterprise Security Policy Evaluator
and has been evaluated on a number of Java EE applications.

Mendling et al. [27] propose a meta-model integration approach to enhance
the security features of Business Process Management Systems that operate
using Web Services (BPEL). The meta-model elements of web services’ BPEL
are mapped to RBAC elements. Roles and partners in BPEL, which represent
the sets of operations that are carried out during a business process, are mapped
into RBAC roles. Activities, which provide a channel for an external party to
send a message to a BPEL, are mapped into RBAC permissions. The authors
develop an XSTL transformation script to extract an XML description of roles
and permissions from a BPEL process definition which enables the definition
and enforcement of RBAC polices and constraints.

There has been only a little work on UML-based security modeling [28, 29,
30, 31] . The focus of UMLsec [28] is on modeling security issues such as data

14 Manar H. Alalfi, James R. Cordy, and Thomas R. Dean

confidentiality and integrity. Basin et al. propose Model Driven Security (MDS)
and its tool SecureUML [30] to integrate security models into system models.
The authors first specify a secure modeling language for modeling access con-
trol requirements and embed it as an extension of UML Class diagrams. The
authors of authUML [29] take a step back and focus on analyzing access con-
trol requirements before proceeding to the design modeling to ensure consistent,
conflict-free and complete requirements.

The Ahn and Hu method [31] differs from the above approaches in using
standard UML to represent access control features of the security model. They
provide policy validation based on Object constraint Language (OCL) and a role-
based constraint language (RCL2000) [32], and then translate the security model
to enforcement code. These efforts are forward engineering approaches, while the
real need is for a reverse engineering approach that recovers and analyzes access
control polices in existing applications. This is the focus of our work.

7 Conclusions and Future Work

In this paper we have presented an approach and a tool, PHP2SecureUML, to
recover a role-based access control (RBAC) security model from automatically
recovered structural and behavioral models of dynamic web applications. We
use source transformation technology to implement the model-to-model trans-
formation and composition. The resulting model can be used to check for RBAC
security properties in the application under test. We demonstrated our approach
on recovering RBAC security models for a medium-sized production web appli-
cation, PhpBB 2.0. In our current work we are using the generated models to
support web application security analysis, testing, maintenance and reengineer-
ing, using PhpBB 2.0 as an example, and we have recently begun a similar study
of role-base security in the popular production educational support system Moo-
dle. We are also planning to conduct a large scale evaluation to better test the
effectiveness of our method, and to extend and adapt our approach to address
other security analysis tasks.

References

[1] Project, O.W.A.S.: The Top Ten Most Critical Web Application Security Vulner-
abilities, http://www.owasp.org/documentation/topten (last access Nov 26, 2011)

[2] Pistoia, M., Flynn, R.J., Koved, L., Sreedhar, V.C.: Interprocedural analysis for
privileged code placement and tainted variable detection. In: ECOOP. (2005)
362–386

[3] Alalfi, M.H., Cordy, J.R., Dean, T.R.: Modeling methods for web application
verification and testing: State of the art. Softw. Test. Verif. Reliab. 19 (2009)
265–296

[4] Cordy, J.R.: The TXL source transformation language. Science of Computer
Programming 61 (2006) 190–210

[5] Alalfi, M.H., Cordy, J.R., Dean, T.R.: Automated Reverse Engineering of UML
Sequence Diagrams for Dynamic Web Applications. In: ICSTW. (2009) 295–302

[6] Alalfi, M.H., Cordy, J.R., Dean, T.R.: SQL2XMI: Reverse Engineering of UML-
ER Diagrams from Relational Database Schemas. In: WCRE. (2008) 187–191

Recovering RBAC Security Models from Dynamic Web Applications 15

[7] Alalfi, M.H., Cordy, J.R., Dean, T.R.: Automating Coverage Metrics for Dynamic
Web Applications. In: CSMR. (2010) 51–60

[8] Alalfi, M.H., Cordy, J.R., Dean, T.R.: WAFA: Fine-grained Dynamic Analysis of
Web Applications. In: WSE. (2009) 41–50

[9] Sandhu, R., Coyne, E., Feinstein, H., Youman, C.: Role-based Access Control
Models. IEEE Computer 29 (1996) 38–47

[10] Basin, D.A.: Model Driven Security. In: ARES. (2006) 4
[11] Paige, R., Radjenovic, A.: Towards Model Transformation with TXL. In: First

Intl. Workshop on Metamodeling for MDA. (2003) 163–177
[12] Liang, H., Dingel, J.: A Practical Evaluation of Using TXL for Model Transfor-

mation. In: SLE. (2008) 245–264
[13] phpBB Group: PhpBB,http://www.phpbb.com/ (last access Nov 27, 2011)
[14] Netcraft Ltd: November 2011 web server survey, http://news.netcraft.com/

archives/category/webserversurvey/ (last access Nov 26, 2011)
[15] PHP Group: PHP usage Stats for April 2007, http://www.php.net/usage.php (last

access Nov 26, 2011)
[16] MySQL: MySQL Market Share, http://www.mysql.com/why-mysql/marketshare/

(last access Nov 26, 2011)
[17] Alalfi, M., Cordy, J., Dean, T.: Automated Testing of Role-based Access Control

Security Models Recovered from Dynamic Web Applications. In: ICSE Workshop
in Automation of Software Test. (2012) submitted

[18] Garzotto, F., Paolini, P., Schwabe, D.: HDM - A Model-Based Approach to Hy-
pertext Application Design. ACM Trans. Inf. Syst. 11 (1993) 1–26

[19] Schwabe, D., Rossi, G.: An object oriented approach to Web-based applications
design. Theor. Pract. Object Syst. 4 (1998) 207–225

[20] De Troyer, O., Leune, C.J.: WSDM: A User Centered Design Method for Web
Sites. Computer Networks 30 (1998) 85–94

[21] Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a modeling
language for designing Web sites. In: WWW. (2000) 137–157

[22] Hassan, A.E., Holt, R.C.: Architecture recovery of web applications. In: ICSE.
(2002) 349–359

[23] Antoniol, G., Penta, M.D., Zazzara, M.: Understanding Web Applications through
Dynamic Analysis. In: IWPC. (2004) 120–131

[24] Di Lucca, G.A., Di Penta, M.: Integrating Static and Dynamic Analysis to improve
the Comprehension of Existing Web Applications. In: WSE. (2005) 87–94

[25] Letarte, D., Merlo, E.: Extraction of Inter-procedural Simple Role Privilege Mod-
els from PHP Code. In: WCRE. (2009) 187–191

[26] Koved, L., Pistoia, M., Kershenbaum, A.: Access rights analysis for Java. In:
OOPSLA. (2002) 359–372

[27] Mendling, J., Strembeck, M., Stermsek, G., Neumann, G.: An Approach to Extract
RBAC Models from BPEL4WS Processes. In: WETICE. (2004) 81–86

[28] Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press.
Cambridge, MA. (March 2006.)

[29] Alghathbar, K., Wijesekera, D.: authUML: a three-phased framework to analyze
access control specifications in use cases. In: FMSE. (2003) 77–86

[30] Basin, D.A., Clavel, M., Egea, M.: A decade of model-driven security. In: SAC-
MAT. (2011) 1–10

[31] Ahn, G.J., Hu, H.: Towards realizing a formal RBAC model in real systems. In:
SACMAT. (2007) 215–224

[32] Ahn, G.J., Sandhu, R.S.: Role-based authorization constraints specification. ACM
Trans. Inf. Syst. Secur. 3 (2000) 207–226

