
SOFTWARE TESTING, VERIFICATION AND RELIABILITY

Modeling methods for web
application verification and
testing: State of the art
Manar H. Alalfi, James R. Cordy, Thomas R. Dean∗

School of Computing, Queen’s University
Kingston, Ontario, K7L 3N6, Canada

SUMMARY

Models are considered an essential step in capturing different system behaviors and simplifying the analysis
required to check or improve the quality of software. Verification and testing of web software requires
effective modeling techniques that address the specific challenges of web applications. In this study we
survey 24 different modeling methods used in website verification and testing. Based on a short catalogue
of desirable properties of web applications that require analysis, two different views of the methods
are presented: a general categorization by modeling level, and a detailed comparison based on property
coverage. Copyright c© 2008 John Wiley & Sons, Ltd.

Received 1 November 2007; Revised 9 September 2008

KEY WORDS: Analysis Models, Web Application Testing, Web Application Verification.

1. Introduction

Like many software domains, web applications are becoming more complex. This complexity arises
due to several factors, such as a larger number of hyperlinks, more complex interaction, and the
increased use of distributed servers. Modeling can help to understand these complex systems, and
several papers in the literature have studied the specific problem of modeling web applications. In
some cases, new models have been proposed, while in other cases, existing modeling techniques have
been adapted from other software domains. Modeling can help designers during the design phases
by formally defining the requirements, providing multiple levels of detail, and providing support for
testing prior to implementation. Support from modeling can also be used in later phases to support
validation and verification.

Most of the early literature concentrates on the process of modeling the design of web applications.
It proposes forward engineering-based methods designed to simplify the process of building highly

∗E-mail: {alalfi, cordy, dean}@cs.queensu.ca

Copyright c© 2008 John Wiley & Sons, Ltd.
Prepared using stvrauth.cls [Version: 2007/09/24 v1.00]

Jim Cordy
**** PREPRINT - DRAFT IN PREPARATION FOR PRESS ****

Jim Cordy

Jim Cordy

Jim Cordy

2 M. ALALFI, J. CORDY, T. DEAN

interactive web applications [1, 2, 3, 4]. Other research uses reverse engineering methods to extract
models from existing web applications in order to support their maintenance and evolution [5, 6, 7].
This paper surveys a range of different analysis models that are currently applied in the field of
verification and testing of web applications. Design modeling methodologies such as those reviewed in
[8, 9, 10] are outside the scope of our study. Our survey focusses on the modeling methods used. Thus
testing and verification methods as a whole, such as user session-data testing [11] and bypass testing
[12] are also outside the scope of this survey.

While reviewing different analysis methods in our scope, we found that some of the literature focuses
on modeling the navigational aspects of web applications [13, 14, 15, 16], while others concentrate on
solving problems arising from user interaction with the browser in a way that affects the underlying
business process [17, 18]. Still others are interested in validating the correctness and completeness of
web page contents [19, 20, 21, 22]. The surveyed models are interested in modeling and verifying
either the static or the dynamic behaviors and features of web applications [23, 24].

In this paper, we categorize, compare and analyze 24 different methods according to the level of
web application modeling - navigation, behavior, and content. In each category, methods are sorted
according to the kind of notation employed. While we tried to choose the most recent methods for our
study, the list of methods considered is not exhaustive and the number of new and not yet considered
methods is rising rapidly.

The rest of this paper is organized as follows. Section 2 motivates our work. Section 3 gives a
brief introduction to web applications and web services and the challenges that affect the analysis and
modeling of web applications. Section 4 describes the set of comparison and categorization criteria
used in our study. In Section 5 we give a brief summary and a comparative analysis of the 24 modeling
methods. Section 6 adds descriptions some other related methods. Finally, we conclude and suggest
some of the open problems in the area in Section 7.

2. Motivation

Previous surveys have compared methods proposed for web application development [9, 10]. Most
concentrate on design methods, methods that focus on the preliminary phases of the software life cycle.
Cuaresma et al. [8] on the other hand concentrate on comparing methods dedicated to requirements
engineering. The work most similar to our study is the survey done by Di Lucca and Fasolino [25],
but their focus is on the functional testing of web applications, while ours is on the analysis models
underlying web application verification and testing. We are interested in those methods that propose
models to capture different properties related to the structure (navigation), behavior, and content of
web applications, and whether these properties are static, dynamic, or interactive.

To date, no one has analyzed modeling methods devoted to verification and testing of web
applications taking into consideration the capabilities of those methods in capturing, verifying or
testing the set of desired web application properties that we discuss in this paper. This study is
undertaken to investigate the current state of the art in the field of web application verification and
testing, and to distill what is being done and what still needs to be done to help researchers interested
in this field to fill the gaps. For web engineers interested in modeling, this study may provide an insight
to the different models and notations used to capture the different features in web applications, and
encourage them to propose new improved models. For those interested in web application verification

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2008; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

MODELING METHODS FOR WEB APPLICATION VERIFICATION AND TESTING 3

Figure 1. Web Application Components (from [26])

and testing, the analysis provided here may suggest new directions that need to be investigated to
improve the quality of web applications. In addition, it provides an overview of the range of analyses
that are being used to support web application verification and testing which may help in the integration
of different methods to derive new, improved techniques.

3. Web Application Modeling

In this section we set our work in the context of the web environment, web applications and services,
introduce the major challenges in the analysis and modeling of web applications for verification and
testing, and outline the desirable properties of web application models that form the basis of our study.

3.1. Web Applications

For the purpose of this survey, a web application is a software application that is accessible via a thin
client (i.e. web browser) over a network such as the Internet or an intranet. A web application is often
structured as a three-tiered application. As shown in Figure 1, the web browser represents the first tier.
The web server that implements CGI, PHP, Java Servlets or Active Server Pages (ASP), along with the
application server that interacts with the database and other web objects is considered the middle tier.
Finally, the database along with the DBMS server forms the third tier.

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2008; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

4 M. ALALFI, J. CORDY, T. DEAN

Web applications generate web pages, comprising different kinds of information such as text, images
and forms. These web pages can be either static or dynamic. Static pages reside on a web server and
contain only HTML and client side executable code (e.g JavaScript) and are served by the web server.
Dynamic pages are generated as the result of the execution of various scripts and components on the
server. These pages contain a mixture of HTML source and executable code, and are served by the
application server.

In our study we treat the terms web application and website as synonymous. Some researchers
consider a website to be simply a set of related web pages grouped together by some means on a
server, or in a folder on a server. Such pages are static pages that don’t use dynamic features and thus
need not be processed by the application servers.

We are interested in all methods that propose models to capture different properties related to the
structure (navigation), behavior, and content of web applications; and whether these properties are
static, dynamic, or interactive. Another level that could be considered is the presentation level, which
describes how information is to be presented to users. Issues related to this level include attributes such
as color and font as well as cascading style sheets. In this study we concentrate on the semantics of
web applications rather than presentation issues.

3.2. Web Services

Web services are a standardized way of integrating web-based applications using separate service
communication interfaces that can be used by other web applications. They are primarily used as a
means for businesses to communicate with clients and each other without exposing detailed knowledge
of each other’s IT systems. Communication is usually in XML, and not tied to any particular operating
system or programming language. Web services don’t require the use of browsers or HTML, and don’t
provide the user with a GUI. Web services are outside the scope of the present study, but may be a
future direction for our work.

3.3. Challenges In Analysis And Modeling Of Websites

Web applications are evolving rapidly, as many new technologies, languages, and programming models
are used to increase the interactivity and the usability of web applications. This inherent complexity
brings challenges to modeling, analysis, testing, and verification of this kind of software. Some of these
challenges are:

• The diversity and complexity of the web application environment increases the risk of
non-interoperability and the complexity of integration. Web applications interact with many
components that run on diverse hardware and software platforms. They are written in diverse
languages and they are based on different programming approaches such as procedural, OO,
interpreted, and hybrid languages such as Java Server Pages (JSPs). The client side includes
browsers, HTML, embedded scripting languages and applets. The server side includes CGI,
JSPs, Java Servlets, and .NET technologies. They all interact with diverse back-end engines and
other components that are found on the web server or other servers. The integration of such
components and the web system in general is extremely loose and dynamically coupled, which

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2008; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

MODELING METHODS FOR WEB APPLICATION VERIFICATION AND TESTING 5

provides powerful abstraction capabilities to the developers, but makes analysis for testing and
verification extremely difficult.
• Another major challenge comes from the dynamic behavior, including dynamically generated

client components, dynamic interaction among clients and servers, and the continual changes in
the system context and web technologies.
• Web applications may have several entry points, and users can engage in complicated interactions

that the web application cannot prevent. Web applications often contain database components
and may provide the same data to different users. In these cases, applying access control
mechanisms becomes an important requirement for safe and secure access to web application
resources, and the process of implementing and applying such rules is considered a great
challenge.
• Web applications have the property of low observability, due to the difficulty of tracking some

outputs. Usually the output that is observed and analyzed consists of the HTML documents sent
back to the user. But there are also other kinds of output, such as the changed state of the server
or the database, messages sent to other web applications and services, and so on. It is considered
a challenge to perform a precise analysis of web applications that takes into account all of this
information.

3.4. Desirable Properties For Website Modeling

We can view web applications from three orthogonal perspectives (levels of modeling): web navigation,
web content and web behavior. We first present an initial categorization of the desirable properties of
web applications based on the level of modeling, and in Section 4 we further categorize the properties
according to the static, dynamic, or interaction aspects as applicable:

1. Web Navigation

• Static navigation properties: Most of the early literature on web analysis and modeling
concentrates on dealing with static links, treating web applications as hypermedia
applications. It addresses the checking of properties such as broken links, reachability
(e.g., return to the home page), consistency of frame structure, and other features related
to estimating the cost of navigation, such as longest path analysis.

• Dynamic navigation properties: This analysis focuses on aspects that make the navigation
dynamic. That is, the same link may lead to different pages depending on given inputs.
The inputs could be user inputs transferred via forms, or system inputs depending on some
state in the server such as date, time, session information, access control information or
information in hidden fields.

• Interaction navigation properties: This analysis focuses on properties that are related to
user navigation that happens outside the control of the web application, such as user
interaction with the browser. This includes features such as use of the back or forward
buttons.

2. Web Content

• Static content properties: Consistency of the original web page content with respect to
syntax and semantics. Two properties are explored in this category, completeness and

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2008; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

6 M. ALALFI, J. CORDY, T. DEAN

correctness. When verifying the completeness of a web application the model should
enforce that a given web page contains some information, links between web page exist
and sometimes even check that the web pages exist (broken links). Correctness implies that
the information provided on a web page is valid based on the application requirements.

• Dynamic content properties: Consistency of the syntax and semantics of dynamic content.
This analysis requires the ability to check the dynamically generated content that results
from the execution of script code by the application server. Some technologies are also
able to generate new connections, some of which may be to a different server. New web
components could be generated at run time, and these components must also be analyzed.

3. Web Behavior

• Security properties: This issue is related to access control mechanisms that are employed
on the web content or web links. This issue could also be employed on the back-end, as
the database may contain data reserved to specific users. Non-authorized users must not
be able to access such data. These properties are also tied to session control mechanisms.

• Instruction processing properties: These issues include both server and client side
execution. We define client-side execution as any process changing the state of the
application without communication with the web server. Server-side execution is defined
by all instructions processed on a web server in response to a client’s request. A modeling
method should to be able to model these features and to recognize whether execution is
done on the server or on the client.

Tables I and II provide descriptions and examples of these properties. The list is not complete, but
it provides a summary of the set of properties that the reviewed methods are interested in modeling,
checking or testing. We use symbolic keys in the tables (e.g. SDMP02) to refer to the surveyed methods.
Please refer to Table III in Section 5 for details on the symbolic keys.

4. Comparison And Categorization Criteria

In our study we reviewed 24 different modeling methods that are applied in the field of testing and
verification of web applications. Following is a brief description of the main comparison criteria that
are used in our review:

1. Feature Type: The web application features that are being captured by the proposed models, and
the properties that the modeling methods are capable of checking. These features are categorized
first in Section 3.4 based on the level of web application modeling into features related to
web application navigation, content, or behavior. In this section, we add another categorization
dimension, static, dynamic, or interactive. This additional information can help us to identify the
improvements that the modeling methods are trying to achieve at each level of web application
modeling. We relate each category to the properties described in Section 3.4 at the end of its
description.

• Static Features: These include the static properties of web applications, such as links that
connect an HTML page with other HTML pages. When the user clicks on a static button

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2008; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

MODELING METHODS FOR WEB APPLICATION VERIFICATION AND TESTING 7

Feature modeled or property
checked

Example feature or property description

Static
Navigation
Properties

Broken links Verify the absence of broken links in the web site. An example formula in computational tree logic (CTL), [SDMP02]:

 Φ1 = AG(link → EX page).

 For each link in the web site, a page exists that is attached to it in the next sate.

Reachablity Check if there is at least one navigation path from the start page (StartPage) to the target page (TargetPage). An
example formula in computational tree logic (CTL), [HH06]:

 EF (StartPage = TargetPage).

Dead End Check that it is not possible to reach Target Page along any path from the start point. (TargetPage is not reachable
from any other page.). An example formula in computational tree logic (CTL), [HH06]:

 Not(AG EF (StartPage = TargetPage)).

Frames
consistency

Example situations that lead to frames inconsistencies:
– Duplicated frame names (a name l that occurs in more than one frame tag).
– Frame trees deeper than a fixed threshold.
– Non-existent link targets (anchors tag < a, l > such that l does not appear in any frame tag). [dA01]

 An example formula in linear temporal logic (LTL),[HPS04]:
 [] p, where p = duplicateFrames_mainW = = 0

duplicateFrames_mainW is a Boolean variable that is set to True if two frames having same name are active simultaneously.
 This property requires the absence of a frames error where frames having same names are active simultaneously

Form filling

The ability of modeling form based pages, and to populate those forms with different values automatically or semi-
automatically.

Longest path The length of a path consists of the number of bytes, or the number of links, that must be downloaded in order to follow
it. An example formula in Constructive µ – calculus [dA01]:

In MCWEB, there is an extension that enables the computation of the longest and shortest paths in a set of webnodes.
To find the all-pair longest path between webnodes of a domain ∆, MCWEB post-processes the output of the formula,
 a: home page a; Post(x): webnodes reachable by following one edge from x, in_ domain ∆ : holds for a webnode W
 if there is an URLpage S in W such that S contains the substring ∆ ;

 〉〉∆∩∪=〈〈 xdomaininxPostaxx ,)_)((.µ

 The computation of the all-pair longest path can provide information about the bottlenecks in the navigation of a site.

Dynamic
 Navigation

System input Modeling using input provided by the user or system to generate a different target for the same navigation link. For
example, links that are available only if the user has given access rights; search engines such as Google, which depend on
user’s keywords to generate a document containing dynamically generated links representing the result of the search.

User input

Interaction
 Navigation

HTML + user
operations

Modeling and checking the user interactions with the browser that may affect the business logic of web application; this
could include modeling the back button, the forward button, and URL rewriting. The following sequence of steps
generates the Amazon bug[18], a well known bug caused by ignoring user interactions with the browser.

Step 1: The shopping cart of the user is empty and the user browses the web site.
Step 2: The user adds an item Item1 to the shopping cart.
Step 3: The user decides that he does not want to buy Item1 after all, but instead of deleting it from the shopping cart he
uses the “back” button to return to the previous shopping cart which is empty.

An example formula using Alloy, [BA05]:

all s: State | s.browser.display.cHasItems = s.browser.bl.scHasItems

A major requirement of the model is to guarantee the integrity of the system by ensuring that the list of items that are
displayed on the browses current web page (cHasItems) is identical to the contents of the shopping cart (scHasItems); bl
(business logic) is an abstract class that relates the browser to its data content. Using Alloy Analyzer one can see that
the assertion fails.

Table I. Desirable Properties for Website modeling.

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2008; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

8 M. ALALFI, J. CORDY, T. DEAN

Feature modeled or property
checked

Example feature or property description

Static
content
properties

Incomplete WP The model should enforce that a given web page contains some information, links between pages exist and that the web
page exists. An example formula using Rewriting-based specification language, [ABF05]:

L→#r : If L is recognized in some web page of W, then r must be recognized in some web page of W which contain the
marked part of r.

member(name(X), surname(Y)) → hpage(name(X), surname(Y), status())

If there is a Web page containing a member list, then for each member a home page exists containing (at least)
 the name, the surname and the status of this member.

Incorrect WP The model should enforce that the information provided on a web page is valid based on the application requirements.
An example formula using Rewriting-based specification language, [ABF05]:

L →error | C, If L is recognized in some web page of W and all the expressions represented in C are evaluated to True (or
C is empty), the web page is incorrect.

project(year(X)) → error | X in[0 − 9]*, X < 1990

If there is a Web page containing a project year, where the year is numeric and less than 1990, it should be replaced with
error.

Dynamic
content
properties

Incomplete WP Check that the syntax and semantics (specifically the incomplete property) of dynamically generated content that results
from the execution of scripts on the application server.
(None of the examined modeling methods use this kind of checking.)

Incorrect WP

Check that the syntax and semantics (specifically the incorrect property) of dynamically generated content that results
from the execution of scripts on the application server.
(None of the examined modeling methods use this kind of checking.)

New
connection

Model connections whose source and target is determined by the system at run time. For example:
Link an electronic book which has 200 chapters; linking each one individually in the content list is time consuming; time
could be saved by using an algorithm that can use user selected text (in the content list) to automatically links the
chapter with a title corresponding to the selected text.

New content Model new generated components that the user can’t determine until run time.

Instruction
processing

Server-side
execution

If the method provides a model for code that is executed on the client or the server, can the method specify the location
of such execution (i.e. is it executing on the client or server side).

Client-side
execution

Security
properties

Access control Check if the access control rules specified in the application requirements are violated in the web application. An
example in computational tree logic (CTL), [CMRT06]:
A member cannot have administrator functions and an anonymous user cannot view pages belonging to a member

AG(member → !all); AG(noLog → (!partialΛ!all))

All: administrator functions; partial: member functions.

Session/cookie. Check if the inactive period of the current session is over a time limit (e.g. 5 minutes). If the inactive period is greater
than the time limit, the HTTP request must be redirected to an authentication page to re-authenticate the user. An
example in first-order logic [KLH00]:

))(.)5().().)(((AuthredirectthisInactivesSessionthissSessions →>∧=∈∃

The this.Session () is a function that returns a session object; s.Inactive() is a function that returns the inactive period
for the session object s. The this.redirect (Auth) specifies that the HTTP request is redirected to the Auth server-page.

Table II. Desirable Properties for Website modeling (Cont.)

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2008; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

MODELING METHODS FOR WEB APPLICATION VERIFICATION AND TESTING 9

or a static link, a request is sent to the server in order to fetch a page. The server responds
to the request by retrieving the required page from its storage and sends it back to the
client. In this category properties from Section 3.4 related to static navigation and static
content can be checked.

• Dynamic Features: These features include dynamic links and dynamic content properties.
Dynamic links describe the connection between HTML pages and code that must to be
executed on the server in order to generate the required information, build it into an HTML
page, and return it to the client. The processing done by the server may depend on input
that is provided by the user or the system. User inputs are usually sent by filling a form or
by hidden fields in the HTTP request. System inputs depend on the server state, such as
server time, or on some kind of interaction with other resources, such as database servers
or web objects. The output could be constructed as new content, or a link in a new HTML
page. Properties from Section 3.4 that fall into this category are those related to dynamic
navigation, dynamic content, security, and instruction processing properties.

• Interaction Features: The browser’s influence on the navigation behavior of the web
application should be taken into consideration when modeling or analyzing web
applications, since user interaction with the browser can interactively modify navigation
paths. This category includes properties from Section 3.4 related to user interaction with
the browser.

2. Notation: Modeling methods use different notations; some of them are formal, while others are
either semi- or informal. The main notations used by the reviewed methods are:

• Statecharts [27].
• UML and OCL [28] [29]
• UML-based Web Engineering (UWE) [30]
• Alloy [31].
• Finite State Machines (FSM) [32]
• Directed Graphs and Control Flow Graphs (CFG) [33] [34]
• Specification and Description Language (SDL) [35].
• Term Rewriting Systems (TRS) [36]

3. Level of modeling: Web application modeling can be viewed from different perspectives.
We compare the modeling methods here according to three basic levels: content, structure
(navigation), and behavior. These three levels in turn could have a static or a dynamic flavor.

4. Application of the model: In our study we focus on methods that are concerned with modeling
web applications for the purpose of testing or verification; this also could include design
verification.

5. Source code required?: Modeling methods may apply a white-box analysis, which requires
source code, or a black-box analysis which does not require source code.

6. Model optimization: Complex systems in general have a state explosion problem or they generate
a large complex model. In all cases such models need some sort of optimization. In web
applications, this problem becomes a major challenge to the success of any method that attempts
to analyze and model a scalable web system.

7. Tool support: We note whether the method is supported by a proposed or existing tool.

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2008; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

10 M. ALALFI, J. CORDY, T. DEAN

5. Comparative Analysis.

Our study produced two different views of the surveyed methods: a general categorization by modeling
level, and a detailed comparison by property coverage. To minimize space in tables and text, we identify
each modeling method with a key based on the last name of authors and the date of publication. Table
III gives these keys along with the full name in text and the citation for the method.

Table IV summarizes the first view, categorizing each of the methods based on the level of modeling:
as interaction behavior modeling methods, navigation modeling methods, content modeling methods
or hybrid modeling methods (methods that model more than one level). In each category, methods
are sorted according to the notation used by the method. At the same time, comparison between the
methods was also done based on other the other criteria presented in section 4.

The second comparison, shown in Table V, compares some of the more specific details of methods in
the same category, in particular, and with other methods in other categories in general. The comparison
is based on a combination of feature type and the level of web application modeling, using the
comparison criteria outlined in Section 3.4 as desirable properties for web site modeling.

In the remainder of this section we discuss and compare the characteristics of the methods
summarized in these tables. Our presentation is organized by the levels in Table IV, that is, we first
discuss interaction modeling methods in section 5.1, then content modeling methods in section 5.2
followed by navigation modeling methods in section 5.3, and finally hybrid methods in section 5.4.
The categories are not disjoint; some methods are discussed more than once since they have aspects
that address multiple levels, but we try to make the presentation consistent with Table IV otherwise.
For example methods in each category are discussed based on the notation employed by those methods
in order to identify how specific notation can affect the capability of the modeling methods to capture
different features.

5.1. Interaction Behavior Modeling Methods

Dealing with user operations (interactions) is very important. Such interactions are problematic, for
example: clicking the back button forces the computation to resume at a prior interaction point;
submitting multiple forms then clicking the back button causes computations at the same interaction
point to resume many times. These operations happen in the browser and are not reported to the web
application. Consequently, the browser interacts with the web application in an unexpected manner.
Modeling methods that do not take into account this kind of behavior are incomplete and unrealistic.
The methods discussed here refer to the first section of Tables IV and V. The presentation follows the
chronological order of the methods unless specific relationships between methods need to be identified.

Di Lucca and Di Penta (LuccaP03) [37] model the browser loading a page as a Statechart with four
basic states: Back Disabled, Forward Disabled (BDFD); Back Enabled, Forward Disabled (BEFD);
Back Enabled, Forward Enabled (BEFE); Back Disabled, Forward Enabled (BDFE), as shown in
Figure 2(a). The user navigation is modeled as transitions between those basic states and the transition
has four different labels: forward, backward, reload and link, to indicate if the transition is activated
by clicking on regular links or by clicking browser navigational buttons. The state transitions are also
labeled with guard conditions to specify the navigation sequence restrictions. Possible interactions
with the browser are generated using test cases to satisfy defined coverage criteria, such as all states,
all transitions, all transition k-tuples, and all round-trip paths. Potential inconsistencies are collected

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2008; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

MODELING METHODS FOR WEB APPLICATION VERIFICATION AND TESTING 11

Shortcut Keys Full name in Text Reference No.

LuccaP03 Di Lucca and Di Penta 2003

[37]

GFKF03 Graunke et al. 2003

[38]

LK04 Licata and Krishnamurthi 2004

[18]

CZ04 Chen and Zhao 2004

[39]

BA05
ABGR07

Bordbar and Anastasakis 2005
Anastasakis et al. 2007

[17]
[40]

ABF+06
ABF07

Alpuente et al. 2006
Alpuente et al. 2007

[19,20,21,22]

CF06
CF07

Coelho and Florido 2006
Coelho and Florido 2007

[42,43]

Con99

Conallen 1999 [44]

BMT04 Bellettini et al. 2004

[13]

RT00 Ricca and Tonella 2000

[14]

dA01

dAHM01
MCWEB , de Alfaro 2001
de Alfaro et al. 2001

[49,50]

SDMP02
SDMP03

Sciascio et al. 2002
Sciascio et al. 2003

[51, 52]

SDM+05

CMRT06
Sciascio et al. 2005
WAver , Castelluccia et al. 2006

[15]
[47]

WP03

Winckler and Palanque 2003

[54]

HH06

(FARNav)
FARNav , Han and Hofmeister 2006

[16]

SM03 Syriani and Mansour 2003

[56]

KLH00

(WTM)
Web Test Model WTM, Kung et al. 2000 [59]

BFG02

(Veriweb)
VeriWeb, Benedikt et al. 2002

[57]

HPS04 Haydar et al. 2004

[24]

AOA05

(FSMWeb)
FSMWEB, Andrews et al. 2005

[23]

WO02 Wu and Offutt 2002

[58]

TR04

TR02
Two- layer-model, Tonella and Ricca 2004
Tonella and Ricca 2002

[60]
[45]

KZ06 Knapp and Zhang 2006

[46]

GSDA07 Guerra et al. 2007 [62]

Interaction B
ehavior

M
odeling M

ethods

C
ontent M

odeling
M

ethods
N

avigational M
odeling

M
ethods

H
ybrid M

odeling M
ethods

(M
ore than one level)

Table III. Reference linking summary tables with text

by executing the browser test cases and comparing the results with an oracle, taking into account the
verification of the chosen coverage criteria. The authors propose a way to integrate their browser model
with other web application testing models to make them browser interaction aware methods. Unlike
the following methods, this method is applied in web application testing rather than verification.

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2008; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

12 M. ALALFI, J. CORDY, T. DEAN

Method
Name

Feature
type

Notation Level Application Source
code
required

Model
optimization

Tool support

LuccaP03 Interaction StateCharts Interaction Behavior Testing No No None

GFKF03 Interaction Abstract model, use
lambda calculus

Interaction Behavior Web application
interaction with the
browser

No No Prototype

LK04 Interaction WebCFG Interaction Behavior Verification Yes Yes

Implement a
model checker

CZ04 Interaction
+Static

Labeled transition Interaction + static
(Navigations)

Testing and verification No Yes None

 BA05
ABGR07

Interaction UML(Web application
structure)
 OCL (behavior of the
model)

Interaction Behavior Verification for user
interaction(Amazon +
Orbitz bug)

No Yes UML2Alloy

ABF+07
ABF06

Static Partial rewriting Content Verification Yes No WebVerdi-M
GVerdi-R

CF07
CF06

Static Logic PL- Prolog
extension (XCentric)

Content XML_based web
application verification

Yes No VeriFLog

Con99 Static Extended UML Structure (Navigation) Analysis No No Rational Rose
Tools

BMT04 Static +
dynamic

UML-meta Model +
UML state diagram

 Structure(Navigation) Analysis & Testing Yes No WebUML

RT00 Static Directed graph

Structure(Navigation) Analysis + can be used for
verification & testing

No No ReWeb

dA01
dAHM01

Static Directed graph
With Webnodes

Structure(Navigation) Verification No No MCWeb

SDMP02 Static +
dynamic

Web graph Structure(Navigation) Design Verification No No AnWeb

SDM+05

CMRT06

Static +
dynamic

(WAG)Web
application graph +
extension to Kripke
structure

Structure(Navigation) Design Verification No No WAVer + SMV
tools

WP03

Static +
dynamic

Extended StateCharts Structure(Navigation) Design Verification Yes Yes SWCEditor

HH06

FARNav
Static +
dynamic

StateCharts Adaptive (Navigation) Design and
implementation
Verification + testing

No Yes Existing SVM
model-checking
tools

SM03 Static +
dynamic

SDL Structure(Navigation) Testing and verification Yes No Existing SDL
Support tool

KLH00

WTM
Static +
dynamic

Control flow graph,
data flow graph, and
finite state machines
OSD(object state
diagram)

Static and dynamic
Behavior, Dynamic
Navigation

Testing Yes No None

BFG02
Veriweb

static +
dynamic

Directed graph Navigation + Behavior Testing Yes Yes VeriSoft + web
Navigator +
ChoiceFinder +
SmartProfiles

HPS04 Static+
dynamic

System of
communicating
automata

Navigation + Behavior Verification No Yes Famework with
GUI + network
monitoring tool
+ analysis tool

AOA05
FSMWeb

static +
dynamic

hierarchies of Finite
State Machines (FSM)

Navigation + Behavior System level testing No Yes Prototype

WO02 Interaction
+ static +
dynamic

Regular expression Interaction + dynamic
Behavior

Can be used for testing +
implementation + impact
analysis

Yes No None

TR04

TR02
Static +
dynamic

 (model navigation
layer) + CFG (client
& server code)

Structure(Navigation)
+Behavior

Testing Yes No ReWeb +
TestWeb

KZ06 Static +
dynamic

Extended UML
(UWE)

Structure(Navigation)
+Behavior

Design Validation and
Verification

No No ArgoUWE +
Spin or
UPPAAL

GSDA07

Static +
dynamic

Ariadne Development
Method(ADM)

Structure(Navigation)
+Behavior

Design Validation and
Verification

No No a Framework
implemented in
AToM3

Interaction B
ehavior

M
odeling M

ethods

C
ontent M

odeling
M

ethods
N

avigational M
odeling

M
ethods

H
ybrid M

odeling M
ethods

 (M
ore than one level)

Table IV. Summary of Methods Categorized by Modeling Level

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2008; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

MODELING METHODS FOR WEB APPLICATION VERIFICATION AND TESTING 13

D
es

ir
ab

le
 F

ea
tu

re
s o

f
W

eb
 a

pp
lic

at
io

n
M

od
el

in
g

 M
et

ho
d

N
am

e

St
at

ic
 N

av
ig

at
io

n
Pr

op
er

tie
s

D
yn

am
ic

N

av
ig

at
io

n
In

te
ra

ct
io

n
N

av
ig

at
io

n
St

at
ic

 c
on

te
nt

 p
ro

p.

D
yn

am
ic

 c
on

te
nt

 p
ro

pe
rt

ie
s

In
st

ru
ct

io
ns

pr

oc
es

si
ng

Se

cu
ri

ty
 p

ro
pe

rt
ie

s

B
ro

ke
n

lin
ks

R

ea
ch

ab
lit

y
F

ra
m

es

co
ns

is
te

nc
y

F
or

m

fil
lin

g
Lo

ng
es

t
pa

th

Sy
st

em

in
pu

t
U

se
r

in
pu

t
H

TM
L

+
us

er

op
er

at
io

ns

In
co

m
pl

et
e

W
P

In
co

rr
ec

t
W

P
In

co
m

pl
et

e
W

P
In

co
rr

ec
t

W
P

N
ew

co

nn
ec

tio
n

N
ew

co

nt
en

t
Se

rv
er

-
si

de

ex
ec

ut
io

n

C
lie

nt
-

si
de

ex

ec
ut

io
n

A
cc

es
s

co
nt

ro
l

Se
ss

io
n/

co
ok

ie
s

L
uc

ca
P0

3

Y

G
FK

F0
3

Y

Y

L
K

04

Y

Y

C
Z0

4

Y

Y

Y

Y

Y

 B
A

05

A
B

G
R

07

Y

A
B

F+
07

A

B
F0

6

Y

Y

C
F0

7
C

F0
6

Y

Y

C
on

99

B
M

T
04

Y

Y

Y

Y

Y

Y

Y

R
T

00

Y

Y

Y

dA
01

dA
H

M
01

Y

Y

Y

Y

SD
M

P0
2

Y

Y

Y

Y

Y

SD
M

+0
5

C
M

R
T

06

Y

Y

Y

Y

Y

Y

W
P0

3

Y

Y

Y

Y

Y

Y

Y

H
H

06

(F
A

R
N

av
)

Y

Y

Y

Y

Y

Y

Y

SM
03

Y

Y

Y

Y

Y

K
L

H
00

(W
T

M
)

Y

Y

Y

Y

B
FG

02

(V
er

iw
eb

)
Y

Y

Y

Y

Y

Y

Y

Y

H
PS

04

Y

Y

Y

Y

Y

Y

Y

Y

A
O

A
05

(F
SM

W
eb

)
Y

Y

Y

Y

Y

Y

W
O

02

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

T
R

04

T
R

02

Y

Y

Y

Y

Y

Y

Y

Y

Y

K
Z0

6

Y

Y

Y

G
SD

A
07

Y

Y

Y

Y

Y

St
at

ic
St

at
ic

D
yn

am
ic

D

yn
am

ic

In
te

ra
ct

io
n

Table V. Detailed Comparison of Methods by Properties Covered

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2008; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

14 M. ALALFI, J. CORDY, T. DEAN

Graunke et al. (GFKF03) [38] detect data inconsistency problems such as the “Orbitz” bug [18]
and bugs caused by form input. Problems are detected dynamically by modifying the server run-time
system. An abstract model encodes user interactions with either the application or the browser using
its navigation buttons (e.g., forward, backward) in terms of three rewriting rules (pattern/replacement
pairs describing changes in state): fillform, switch, and submit. The model is focussed on
sequential web interaction and thus is limited to a single server and a single client (Figure 2(b)).
Dynamic features are limited to client-side forms with arbitrary client-side navigation (such as back
and forward buttons) represented using the rewrite rules, allowing for detection of navigation bugs such
as the Orbitz problem.

Licata and Krishnamurthi (LK04) [18] have built a model checker that uses the Graunke et al. model
to reduce user operations to two main rewriting rules: submit and switch. Their method differs
from Graunke et al. in that it is a static method that can provide guarantees about all possible execution
sequences using a control flow graph (CFG) to model the web application. User operations are added
to extend the graph to a WebCFG constructed automatically from the source of the application. The
WebCFG is built using a standard CFG construction technique followed by a graph traversal to add
web interaction nodes and edges which model the user interactions with the browser. The resulting
model is checkable using language containment, implemented as constraint automata optimized by
automatically generating constraints to rule out redundant forward paths.

Chen and Zhao (CZ04) [39] model user interactions with web browsers using a much more complete
model. As well as modeling the back button, forward button and URL rewriting functionalities, their
method is distinguished from other methods in its ability to represent the history stack and its impact on
navigation, the local cache and its influence on the freshness of web pages, and authentication sessions.
While this method builds a navigational model taking into account interaction with the browser,
dynamic links are not represented in the assumed page navigation diagram, and in the functionality
provided by session/cookie techniques of the application under test, Chen and Zhao have chosen to
model only session control. The proposed model (Figure 3(d)) is a labeled transition system (LTS)
consisting of a set of states S, a set of labels L and a set of transition rules mapping between states.
States maintain a page id to denote the current page and an error page for invalid accesses, a history
stack of current URLs in the session history, a set of page ids for locally cached pages, and a boolean
to represent the authentication status of the session. Labels encode user actions as entry (a manually
entered URL), back, forward, err (navigation redirected to a special error page), or one of a number of
specific user actions such as signin or signout. A fresh/cache flag indicates whether the resulting page
is from the server or the local cache.

In this model, the example rule shown in the Figure 3 can be translated as: “If the user can sign-in
from page p into page q and q is in the cache, then there is a transition from the current state p to the
one with page q, where q is put into the history stack”. In the new state, the guard is set true to indicate
that the session for authentication is now open, and the label on the transition indicates that this is a
sign-in action.

Bordbar and Anastasakis (BA05) [17] create an abstract model, called Abstract Description of
Interactions (ADI) to depict the interactions between the browser and business logic. This model
consists of four classes: the browser with its functionality, the business logic that relates to the browser
and it’s data content, the data that are exchanged between the server and the browser, and the generic
functionality of the web page that contains data which could be altered from the user interface. Figure
3(e) shows their proposed model.

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2008; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

MODELING METHODS FOR WEB APPLICATION VERIFICATION AND TESTING 15

B

 Di Lucca and Di Penta Method:
• Model the browser loading a page as a

 statechart with four basic states

 Licata & Krishnamurthi Method (not shown):
• Model user navigation and interaction using a Web Control Flow Graph (WEBCFG)

• Use Graunke et al. method to minimize user interactions to submit and switch

• Unlike Graunke, static method using source code to generate the model

Di Lucca and Di Penta (LuccaP03) Method

Graunke et al. (GFKF03) Method

Interaction Behavior Modeling Methods

 Graunke et al. Method :
• Encode user operations using rewriting rules

• Detect data inconsistency problems in

 form filling

A

C

Figure 2. Interaction Behavior Modeling Methods: the Di Lucca and Di Penta (LuccaP03) [37], Graunke et al.
(GFKF03) [38] and Licata and Krishnamurthi (LK04) [18] models.

While Licata and Krishnamurthi (LK04) [18] built their own model checker, Anastasakis et al. [40]
use the Alloy [31] model checker to find interaction bugs. The main difficulty of this method is the
process of building the ADI model from the Platform Independent Models (PIM) for web applications
which are large and complex. The construction process requires a projection of the PIM and deletion
of the unrelated model elements, which is currently done manually.

To summarize, the authors in this section are able to model the interactions of web applications with
the browser by using abstract models represented in different notations. All of the surveyed methods
are able to model the basic browser back and forward operations. Some of the methods also model
other browser features such as the history stack, the page cache and user sessions. These methods
manually integrate the interaction model with a static navigational model. Some detect bugs in the
interaction between the web application and the browser by implementing their own model checker or
by using existing testing and model checking techniques. None of the models demonstrate integration
with dynamic web applications, or how dynamic features affect the interaction models.

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2008; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

16 M. ALALFI, J. CORDY, T. DEAN

Bordbar and Anastasakis Method (BA05)

Interaction Behavior Modeling Methods

 Bordbar and Anastasakis Method :

Impl. & Analysis via MDA

A template for ADI interaction
Analysis of UML models using UML2Alloy

• 20 transition rules, for example

 Chen and Zhao Method:
• Labeled transition system is a quadruple

 (S, L,!, s0), where

D

E

HTML Parser

History stack

Browser Cache

Object ModelUser Interface

HTTP Module Cache Management

InternetRequest Response

……Web Server 1 Web Server 2 Web Server N

Chen and Zhao Method (CZ04)

Presentation Module

Network Interface

Figure 3. Interaction Behavior Modeling Methods (cont’d): the Bordbar and Anastasakis (BA05) [17] and Chen
and Zhao (CZ04) [39] models.

5.2. Content Modeling Methods

These methods check the completeness and the correctness properties of web application content. As
the examples in Table II demonstrate, these methods must be able to enforce and check that certain
information is available on a given web page, links between pages exist, or even the existence of the
web pages themselves (completeness property). Furthermore, web application content may need to be
checked against semantic conditions to see if they are met by the web document (correctness property).
This kind of checking must handle both static and dynamic content. The methods discussed here refer
to the second section of Tables IV and V. The presentation follows the chronological order of the
methods unless specific relationships between methods need to be identified.

Alpuente et al. in (ABF+06,ABF07) [19, 20, 21, 22] propose a method for verifying static web
applications for both syntactic and semantic properties using partial rewriting. In this method, web
pages are modeled as the ground terms (constant formulae) of a term algebra, and the entire web site
is represented as a set of such ground terms [36]. Rewriting rules specify pattern/replacement pairs for

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2008; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

MODELING METHODS FOR WEB APPLICATION VERIFICATION AND TESTING 17

modifications to the formulae. A checking specification is a triple (R, IN, IM), where R is a set of
global function definitions used in the rules, IN is the set of correctness constraints encoded as partial
rewriting rules, and IM is the set of completeness constraints encoded as partial rewriting rules. Table
II shows an example of completeness and correctness rules using this method.

The Alpuente et al. method is implemented in GV erdi, a graphical evolution of the VERDI
verification system, and improved in a new prototypeWebV erdi−M (Web Verification and Rewriting
for Debugging Internet sites with Maude) (ABF+07) [22], which implements a more scalable, efficient
and usable verification system that can be used as a web service from anywhere by any user.
GV erdi − R is an improved GVerdi system able to repair faulty web pages semi-automatically [20].
Ballis and Romero in [41] have improved the level of automation of the GVerdi-R system by decreasing
the amount of information to be changed and the number of repair actions to be made to correct a faulty
web site.

In place of the partial rewriting applied in the Alpuente et al.’s approach, which uses tree simulation
for recognizing patterns inside semi-structured documents (HTML/XML). Coelho and Florido
(CF06,CF07) [42, 43] use an extension of Prolog called XCentric to check and repair the syntactic and
semantic properties for the content of XML-based web sites. The XML web document is translated
into a temporary document which is composed of logical terms corresponding to the XML tags in
the original document, then, a sequence of checking and repairing rules is applied on the translated
document to verify the semantic of its content. The verified document is then translated back to its
original representation, XML. The framework was first implemented in Coelho and Florido (CF06)
VeriFLog [42], then improved in Coelho and Florido (CF07) [43].

While the focus of the above methods is on verifying the static content of web applications, up until
now none has studied the verification of dynamic content for correctness and completeness. Such a
study will be required to help with the increasing dynamism of web applications.

5.3. Navigation Modeling Methods

The methods discussed here refer to the third section of Tables IV and V. In this group, some methods
share the same underlying modeling notation, so we discuss methods based first on the notation then
to take into consideration the chronological order. The discussion begins with the UML-based models,
continues with graph-based models, then Statechart-based models and finally an SDL-based model.

UML Navigation Models. Conallen (Con99) [44] extends UML notation to represent web application
components with both static and dynamic features. These extensions include stereotypes, tagged values
and constraints. Stereotypes in UML allow the definition of new semantics for a modeling element. In
this method, this idea is used to define two kinds of web pages, client pages and server pages, and
a web page is modeled as a class with the semantics of either a client or server page as defined by
the stereotype. The relation between server and client pages is defined using the stereotype 〈〈build〉〉
and relations between web pages are expressed using the stereotype 〈〈link〉〉. Other HTML elements,
such as JavaScript, Java applets, ActiveX controls, forms, and frames, are similarly represented as
stereotyped classes. Tagged values, which represent new properties that can be associated with model
elements, are used here to define the parameters that are passed along with a link request, for example
the link association tagged value Parameters is a list of parameter names (and optional values)
that are expected and used by the server page that processes the request. Finally, constraints specify
new conditions under which a model can be considered ”well-formed”.

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2008; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

18 M. ALALFI, J. CORDY, T. DEAN

Tonella and Ricca (TR02) UML meta-model

UML-based Models

UWE Navigation Package (KZ06)

 Conallen Method (not shown):
• Extension of UML notation to represent static

 and dynamic components using stereotypes

• No method proposed for modeling

 Tonella and Ricca Method:
• Proposed meta-model for static web application

 navigation

• Used in reverse engineering methodology

 UML Web Engineering (UWE):
• Used in forward engineering methodology

• Web application design phase

A

B

C

Figure 4. UML-Based Models: the Tonella and Ricca (TR02) [45] and Conallen (Con99) [44] models , and the
Knapp and Zhang (KZ06) [46] UWE basis model.

While Conallen does not himself present a modeling method for any of the web application
development phases, his UML extensions form the basis of many modeling methods applied in
different phases of web development. The main benefit of this method is that it allows representation
of all components of a web application using standard UML notation.

Like Conallen, Tonella and Ricca (TR02) [45] propose a UML meta-model for modeling web
applications, specifically to represent static navigation. The main difference between the two
approaches is that Conallen’s model describes web applications from a design point of view, without
proposing a method for design or for designing the navigation aspects of a web application. Tonella and
Ricca on the other hand use their model in a reverse engineering method, in order to extract a model
of the web application to aid in maintenance and evolution. Their model is therefore aimed more at
analysis rather than design, and specifically at modeling and analyzing navigation features. The Tonella
and Ricca method is semi-automatic; it requires user interaction to complete the model extraction
process. Since user input from POST access methods is not normally logged by most web servers,
the web server or the web application must be augmented with extra tracing. Also, server responses

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2008; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

MODELING METHODS FOR WEB APPLICATION VERIFICATION AND TESTING 19

may be cached (by the client or by a proxy), so some values must be reconstructed heuristically. The
input values used during model extraction are not generated automatically, but instead are provided
by extensive user interaction. Source code running on the browser, such as Javascript and applets, that
are executed by the web server are not currently analyzed. However, their analysis allows treatment of
these components as white-boxes. Figure 4(b) shows the Tonella-Ricca model.

Bellettini et al. (BMT04) [13] use a model similar to the Conallen [44] and Tonella and Ricca [45]
models to extract a model instance (in particular class and state diagrams) from the analyzed web
application. Their method differs from Tonella and Ricca in that Bellettini’s WebUML requires minimal
user interaction. Class diagrams are used to describe the structure and the components of the web
application (forms, frames, Java applets, input fields, cookies, scripts, and so on), while state diagrams
are used to represent the behavior and navigational structures (client-server pages, navigation links,
frames sets, inputs, and scripting code flow control). WebUML employs a mix of techniques based on
source code static and dynamic analysis. Static analysis is performed using simple parsers based on a
pattern matching scanner. Dynamic analysis is performed through source code mutational techniques
combined with simulated web application execution. This technique avoids heavy language analysis,
but requires the implementation of a simple map of mutant operators.

Castelluccia et al. (CMRT06) [47] and Di Sciascio et al. (SDM+05) [15] use the Conallen model
in order to build a diagram for the web application, where the aim is to verify the design of the
application. In order to apply model checking techniques to any model, the models must be formal.
Di Sciascio et al. implement a component, XMI2SMV, that converts UML diagrams in XMI format
into a Web Application Graph (WAG). The WAG can be translated, in turn, into a Symbolic Model
Verifier (SMV) model which is given as input to the NuSMV model checker [48].

A similar conversion idea was applied by Bordbar and Anastasakis (BA05) [17] which is described
in section 5.1. They also designed a model translation tool, UML2Alloy, that in their case maps from a
UML diagram to an Alloy model, which can then be model checked using Alloy.

Graph Navigation Models. UML diagrams provide a valid support to verify web applications
requirements; however, they need to be turned into a formal model; so other researchers prefer to
start with a formal model rather than doing the conversion.

In MCWEB [49, 50] de Alfaro et al. model web applications using a webgraph, an extension to
the simple flat directed graph model in which web pages are modeled as nodes, and links, anchors
and frame (sub-frame) tags are modeled as edges. The model supports natural connectivity analysis
of the web, where web graph nodes (webnodes) form a hierarchical frame structure, generated by the
grammar webnode ::= URLpage (name webnode)∗. A URLpage is the result of fetching a given
URL from the web application using a GET method, and each (name webnode) pair consists of the
name of a subframe and the subframe content. The edges of the graph correspond to links between
web pages, where the destination webnode is obtained by updating the frame structure as specified
in the HTML standard. Based on this model, de Alfaro verifies properties expressed in constructive
µ − calculus against static web applications. The MCWEB tool downloads a web site from a given
URL and builds an abstract representation of it in the form of a graph. Figure 5(a) shows an example
of the structure of a web site in this model.

Like de Alfaro, Ricca and Tonella (RT00) [14] address the issue of hierarchical frame structure of
web pages but in a different way. In their model, nodes and edges of the graph representation are
partitioned into different subsets. The nodes are split into the set of all web pages, the set of frames for
one web page, and the set of all frames. The edges are split into three subsets according to the type of

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2008; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

20 M. ALALFI, J. CORDY, T. DEAN

Graph based models

MCWEB (dAHM01) Model

ReWeb (RT00) Model

AnWeb (SDMP02) Model

 de Alfaro et al. Model (MCWEB):
• Webnodes take into account hierarchical

 structure of the web page
 Ricca and Tonella Model (ReWeb):
• Nodes split into set of nodes

• Edges split into set of links

• Applied to static pages with or without frames

 Di Sciascio et al. Model (AnWeb):
• Node can be window, page or link

A
B

C

Figure 5. Graph-Based Models: the MCWEB [49], Ricca and Tonella (RT00) [14] and Di Sciascio et al. (SMP02,
SMP03) [51, 52] models.

target node. This includes a set of hyper-links between pages or a relation showing the composition of
web page into frames (E1); a set of the relations between frames and pages as they show which page in
which frame is loaded (E2); and a set of relations showing the loading of a page into a particular frame
(E3) as shown in Figure 5(b). The name of the frame is given as a label next to the link. This model is
implemented in ReWeb. ReWeb can download and analyze a web site, and also provides a graphical
user interface for searching and navigating the analysis results. ReWeb’s purpose is understanding
web applications, but it is also used to generate a UML model that can be used by TestWeb, a tool
implemented by Ricca for the purpose of web application testing [53]. ReWeb can be applied to static
web pages with, or without, frame structure.

Di Sciascio et al. (SMP02,SMP03) [51, 52] model the frame structure of web pages by proposing
a new state window that corresponds to a page that could be divided into one or more frames that, in
turn, can load one or more web pages. Each node can be window, page or link, as shown in Figure
5(c). In this work, client side scripts are modeled as static pages. For server-side scripts the dynamic
redirection actions depend on user input from forms. Other dynamic features that require white-box

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2008; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

MODELING METHODS FOR WEB APPLICATION VERIFICATION AND TESTING 21

analysis for the scripts, such as server contact with the database and other resources, are not considered.
Such pages are considered static pages.

Di Sciascio et al. (SDM+05) [15] extend their previous model by adding actions to the set of states.
Web applications are modeled as a finite state machine, where pages, links, windows and actions are
states. Their method, AnWeb, is shown in Figure 6(d).

Castelluccia et al.(CMRT06) extend the web application graph in the verification tool WAver [47]
by adding some important features related to web application access policies. The extension was made
by assigning some resources to two categories of users:

• Authorized users: They can view specific areas of the web application not accessible to
anonymous users.
• Administrators: They can insert or cancel a new user, view the list of authorized users and access

all the resources of the web application.

By introducing this extension, Castelluccia et al. are able to model important features related to
access control, and are able to verify properties related to this feature using axioms formulated in
CTL (computational tree logic). The main advantage of this method is its ability to perform a priori
verification of web application design by applying the verification process to the UML-design of web
application in a single automated process using the verification tool WAver. Figure 6(e) shows the
proposed model.

To summarize, graph-based models can be used to verify page reachability, dominators of the
navigation path, navigation path length, strongly connected components, broken links and frame errors.
It is also possible to do pattern matching to find out if the navigation model contains a diamond
structure, tree structure or index structure.

Statechart Navigation Models. Winckler and Palanque (WP03) [54] have created an extension of
Statecharts [55] called StateWebCharts (SWCs) which is similar to the Conallen model in that it creates
an extension to an existing notation (Statecharts, instead of UML in the Conallen case). Thus they can
help designers in building a formal model of their web application that can be directly model-checked.
Currently SWCs are used to describe the navigation between documents rather than the interaction
between objects. They have created a tool, SWCEditor, that supports their proposed notation and helps
designers create, edit, visualize and simulate SWC models.

Han and Hofmeister (HH06) [16] also use a formal model for navigation. Their method, FARNav,
uses Statecharts [27] to model adaptive navigation - web applications that can semi-automatically
improve their organization and presentation by learning from visitor access patterns. In this model, the
authors use parallel (ANDed) sub-states to represent learned navigation patterns. The main sub-state
contains a state machine with one state per web page, and transitions between pages for the navigation
links. When a web application has only simple (non-adaptive) navigation, this sub-state comprises the
entire navigation model. The model is created by observing the behavior of the web application and
treating screens that provide similar kinds of content as one web page. They attempt to scale their
model by making use of the hierarchical features of Statecharts. Like Di Sciascio et al., their model
is converted into the SMV modeling language CTL to be verified. An existing approach is used for
translation of the Statechart model to CTL. Since FARNav uses Statecharts, the limitations of state
machines’ modeling capabilities make it difficult to verify certain properties that are easy to verify
with a graph-based model such as the de Alfaro, Di Sciascio et al. and Ricca and Tonella methods. For
example, it is difficult to count the length of the navigation path, which can provide information about

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2008; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

22 M. ALALFI, J. CORDY, T. DEAN

Graph based models

Di Sciascio et al. WAG Modeling (SDM+05)

Castelluccia et al. WAG Modeling (CMRT06)

 Di Sciascio et al. WAG Model (SDM+05):
• Web applications modeled as FSM, where

 pages, links and actions are states

 Castellucia et al. WAG Model:
• Extends Di Sciascio method with resources

 for two categories of users: authorized

 users and administrators

D

E

Figure 6. Graph-Based Models (cont’d): the Di Sciascio et al. (SDM+05) [15] and Castelluccia et al. (CMRT06)
[47] methods.

bottlenecks in the navigation of a site, using this method. In addition, none of these models supports
adaptive navigation.

SDL Navigation Models. Syriani and Mansour (SM03) [56] use the Specification and Description
Language (SDL) [35] to model web applications. SDL is a modeling language used to describe real-
time systems. SDL is used to model the details of a system, which can then be simulated and proven,
whereas UML is used to model at a higher level of abstraction [35]. Using SDL, Syriani and Mansour
are able to model pages, hyperlinks, the behavior of the web page on both the client side and the
server side, and client-server and distributed-server communication. In this method, each web page is
represented by an agent, and hyperlinks between pages are represented by signals. A hyperlink in a
web application represents a navigational path through the system, and this relationship is represented
in the SDL model by a signal sent between agents using a channel association. Signals may carry
parameters such as user name and password that are sent with the signals to login to a server. SDL
tools are used to do the testing of their model and to help them in verifying the consistency of a web
application implementation with its specification.

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2008; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

MODELING METHODS FOR WEB APPLICATION VERIFICATION AND TESTING 23

The approaches described in this section all use either a UML or graph based model to represent the
navigation level of the web. While UML is the modeling standard for many applications, including
the web, it may not be the appropriate choice for testing and verification. In order for the UML
based models to apply the testing and verification techniques, the models should be translated into
formal ones. The alternative choice is to use graph based models that can be directly tested or model
checked. All the proposed UML-based models are able to capture the static features of navigation, and
to represent the specific details of the web pages including the frame structure. In graph based models,
nodes represent different modeling semantics in the different methods, from simple pages in the flat
model to pages with frame structure. Nodes are used also to represent windows, links, actions, and in
some methods nodes are categorized into classes to reflect secure resources.

5.4. Hybrid Modeling Methods

Some researchers model the web application as a whole, using a single model for multiple levels of
the application. After the model is expressed, they then attempt to solve the state explosion problem.
Other methods analyze web applications at more than one level by using separate models. This section
begins with the single model methods, followed by a discussion of methods using separate models
for different web application levels. After both are discussed we give a general comparison of all
the methods. In general, the methods discussed here refer to the fourth section of Tables IV and V.
The presentation follows the chronological order of the methods unless we are identifying a specific
relationship between methods.

Single Model Methods. VeriWeb (BFG02) [57], is a dynamic navigation testing tool for web
applications. In this tool a systematic website exploration is performed under the control of VeriSoft,
an existing tool for systematically exploring the state spaces of concurrent, reactive software systems.
In VeriSoft the state space of the system is defined as a directed graph that represents the combined
behavior of all the components of the system being tested. Paths in this graph correspond to sequences
of operations (scenarios) that can be observed during executions of the system. In web applications
the state space is the set of web pages (statically or dynamically generated) in the site that can be
reached from some initial page. Reachable pages are the states of the website state space, while the
set of possible actions from a given page defines the set of transitions from a given state. The size of
the graphs is controlled using a pruning process. VeriWeb is able to deal with static pages, forms and
client-side scripts. Figure 7(a) shows the VeriWeb method.

Haydar et al. (HPS04) [24] propose a method where an automata is generated to model observed run
time behaviors of both static and dynamic pages with form filling (using the GET and POST methods).
The authors call these observed behaviors browsing sessions. Frames and frameset behavior, multiple
windows, and their concurrent behavior are also observed as portions of browsing sessions, called
local browsing sessions. Those partitions are modeled as communicating automata to represent the
concurrent interaction between local browsing sessions and to assist in reducing the state space of the
underling system.

The method is implemented using a framework that includes the following five steps: First, the user
defines desired attributes using a graphical user interface prior to the analysis process. These attributes
are used in formulating the formal properties to verify. Second, a monitoring tool intercepts HTTP
requests and responses during the navigation of the Web Application Under Test (WAUT). Third, the
intercepted data are fed to an analysis tool that either continuously analyzes the data in real time

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2008; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

24 M. ALALFI, J. CORDY, T. DEAN

Modeling Web Applications using a Single Model

VeriWeb (BFG02) Framework

 Haydar et al. (HPS04) Framework

 Benedikt et al. Method (VeriWeb):
• Dynamic navigation testing tool

• Graph-based model

 Haydar et al. Method:
• System of communicating local

 automata models local browsing

 sessions

 Andrews et al. FSMWeb (not shown):
• Framework clusters related web pages into

 logical pages using hierarchical FSMs

A

B

C

Figure 7. Modeling Web Applications Using a Single Model: the VeriWeb (BFG02) [57], Haydar et al. (HPS04)
[24], and FSMWeb (AOA05) [23] methods.

(online mode), or incrementally builds an internal data structure of the automata model of the browsing
session, and translates it into XML-Promela. Fourth, The XML-Promela file is then imported into
aSpin, an extension of the Spin model checker. Finally, the aSpin checker verifies the model against
the properties, yielding counter-examples that facilitate error tracking. While outwardly extensive, this
work lacks for completeness, as other dynamic features, user operations, and security properties are
not captured. Figure 7(b) shows the Haydar’s et al. framework.

Rather than building a flat graph model like the VeriWeb model, or using communicating automata
like Haydar’s model, FSMWEB (AOA05) [23] uses the idea of clustering related web pages into a
logical web page. Hierarchies of finite state machines are then built for the resulting logical web pages.
The FSMWeb model is able to capture many static and dynamic features, but is not able to cope with
all the required features such as user interactions, and security properties. The logical web pages are
currently generated by hand. The hierarchies of FSMs reduce the state space size an alternative to the
graph pruning used by VeriWeb. The communicating automata in Haydar’s model represents another
kind of reduction of the state space. Figure 7 shows all three methods.

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2008; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

MODELING METHODS FOR WEB APPLICATION VERIFICATION AND TESTING 25

Wu and Offutt (WO02) [58] present a modeling technique for web applications based on regular
expressions. They model the behavior of web applications consisting only of dynamically generated
pages for the purpose of functional testing. The technique identifies atomic elements, defined as a static
HTML files or sections of a server programs that print HTML and have an all-or-nothing property (i.e.,
either the entire section is sent to clients or none of it is sent). An atomic element may be a constant
HTML section, or it may be an HTML section that has a static structure but may contain variable
content. These elements are dynamically combined to create composite web pages using sequence,
selection, aggregation, and regular expressions. This work is different from FSMWeb, Haydar et al.
and VeriWeb in its ability to deal with user operations, and in its use of source code in the analysis.

Multiple Model Methods. Kung et al. developed their method, the Web Test Model (WTM) (KLH00)
[59], based on multiple models of the applications under test. The models include Object Relation
Diagrams (ORD), Object State Diagrams (OSD), a Function Cluster Diagram (FCD), and a Page
Navigation Diagram (PND). The web application is represented using object relation diagrams (ORD)
expressed in terms of objects (web pages and components) and their relationships. An ORD =
(V,L,E) is a directed graph, where V is a set of nodes representing the objects, L is a set of
labels representing the relationship types, and (E ⊂ V x V x L) is a set of edges representing
the relations between the objects. There are three kinds of objects in WTM: client pages, server
pages, and components. The relations navigation, request, response, and redirect are used to model
navigation, HTTP request/ response, and redirect respectively in web applications. Navigation behavior
of the web application is represented using a page navigation diagram (PND), a finite state machine
with states to represent client pages, and transitions between the states to represent hyperlinks. Object
state diagrams (OSDs), which are similar to Statecharts, are used to describe the state behavior of
interacting objects. To capture control and data flow information, a Block Branch Diagram (BBD,
similar to a control flow graph) and a Function Cluster Diagrams (FCD, a graph representation of
dynamic function calls) is used.

The FSMWeb (AOA05) [23] and Haydar et al. (HPS04) [24] methods differ from Kung’s work in
that those methods do not require source code to be available; their models are built depending on
logical web pages rather than physical web pages, and they use an enhanced single FSM model instead
of multiple models. Kung et al. differs from FSMWeb in that it can not deal with dynamically generated
web pages, and from Haydar et al. in not handling the concurrent behavior of multiple windows.

Tonella and Ricca propose a two-layer model (TR04) [60]. The first layer is a UML model of the
web application for high level abstraction. This model is based entirely on static HTML links and
does not incorporate any dynamic aspects of the software. The second layer is represented using a
multicolored control flow graph (CFG) obtained by white-box analysis supported with information
extracted from the access log of the server while the application is under executing. This work is
different from FSMWeb and Haydar et al. in that it performs white-box analysis and uses multiple
models. It also differs in not handling the concurrent behavior of frames and multiple windows.

Even though WTM, Tonella and Ricca, and Wu and Offutt’s (WO02) [58] methods all use a white-
box approach in the analysis of the web application, the navigational model obtained by Tonella and
Ricca is static, whereas in WTM and Wu and Offutt the model is dynamic. While WTM and Tonella
and Ricca both try to model web applications using more than one model, the integration of the models
and the validation of their interaction is not clearly described.

In contrast, Knapp and Zhang (KZ06) [46] propose a systematic approach to integrate a complete
model for web applications from separate models. This is done using graph transformation rules on the

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2008; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

26 M. ALALFI, J. CORDY, T. DEAN

UML-based web engineering meta-model [30] to generate a UML state machine that includes static
navigation in addition to dynamic behavior. The final model can then be validated formally, though this
model still lacks for checking of many dynamic, security and interaction properties.

Another integration method is proposed by Dı́az et al. [61], the Ariadne Development Method, which
is able to specify and evaluate hypermedia and web applications in a systematic, flexible, integrative
and platform-independent way. The Ariadne Development Method provides a set of meta-models
to specify information structure, navigation paths, interaction mechanisms, presentation features and
access control policies.

Guerra et al. (GSDA07) [62] propose a verification framework dedicated to security policies in web
design. Their approach is based on graph transformation, using a source model based on a strong design
model, the Ariadne Development Method of Dı́az et al. [61]. The Ariadne Development Method is able
to capture many static and dynamic navigation behaviors, including security policies. In Guerra et al.,
the focus is on verifying properties related to access control policies. They generate an equivalent Petri
net graph from the Ariadne design model using the triple graph transformation system (TGTS) [63].
This is composed of three graphs: the source graph, the target graph, and a correspondence graph that
relates the elements in the source and the target graphs. Using this transformation, the authors are not
only able to verify many static and dynamic properties, but also to relate the results of the analysis back
to the original model.

To summarize, the approaches described here either use a single model for representing more than
one level of the web application, or an integration of different models where each represents a single
level. In the single model methods, to control the large state space caused by the complexity of web
applications, the authors either use pruning in the graph-based models or clustering and communicating
automata for FSM-based models, using the concept of logical web pages rather than physical web pages
as a basis. For the integrated models, the authors use a variety of notations to represent the different
levels, but mostly they use UML-based models to represent static navigation, and state-based models
to represent dynamic behavior. The methods discussed here do not provide a clear description on how
the integration is done, and none of them is able to model or check the desirable properties at all web
application levels.

6. Proposed Methods That Do Not Fit Our Comparison Criteria.

Other work has been proposed to check the correctness of web application design specifications
[64, 65], and yet others try to verify consistency between design specifications and the implementation
of web applications [66].

Deutsch et al. propose a framework, WAVE, to help designers verify properties expressed in temporal
logic against web application specifications expressed in a rule-based textual format. The checking is
done statically at design time [64, 65, 67]. The output is expressed by either true if the property is
satisfied or false with counter example if the property is failed. The framework also is able to generate
code based on the verified web application specifications. The set of properties that WAVE is able
to verify is quite different from those that we reviewed in this survey. Besides being able to verify
reachability properties like all other methods, WAVE focuses on checking the semantic properties of
the business process underlying the web application such as, “the user cannot cancel an order that has
already been shipped”.

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2008; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

MODELING METHODS FOR WEB APPLICATION VERIFICATION AND TESTING 27

Based on the verification engine provided by WAVE, Brambilla et al. [67] provide a front end taking
advantage of Model Driven Architecture (MDA). Instead of writing the text-based specification to be
fed into WAVE along with the properties to be checked at design time, Brambilla et al.’s framework
enables web developers to verify models built by WebML, a high-level notation for data-, service-,
and process- centric web applications, using a set of transformations to translate WebML models into
WAVE specifications. Again, both frameworks are different from the methods that we are interested in,
as they are focused on a different kind of properties - business process properties. They could however
be classified according to our taxonomy as navigational modeling methods.

Miao and Zeng [66] propose an approach to check the consistency between two models: the design
model of the web application and its implementation model. They use Object Relation Diagram (ORD)
proposed by Kung et al. [59] to build their design model. Unlike most of the methods that we reviewed,
properties to be checked are derived from the design model rather than being specified in advance. The
automatically generated properties along with the implementation model that is extracted manually
from the code are fed to the SMV model checker. The properties to be checked are generated based
on a consistency theory proposed by the authors. The consistency theory is mainly concerned with
the coverage of all the nodes (any web page or web component) and relations (any navigational link
between the nodes) specified in the design model. It also checks that any other relation or node not
specified in the design model is not covered. The authors also used the same approach to automatically
generate a sequence of test cases based on the consistency between the design and the implementation
models [68]. This approach could fit in our classification under navigational modeling methods.
However, we choose not to include it because the set of properties to be checked is not specified in
advance, even though they are mainly reachability properties.

Choi and Watanabe [69] propose an approach to check consistency between different design models
of web applications. They check consistency between the page flow diagram and the class model, which
is composed of the object oriented-web application class specifications along with their methods. They
also check consistency of the behavior of the designed web application by checking the consistency
of the class model vs. the activity diagram. They generate a formal model by representing all the
design models as labeled transition systems that are fed into the model checker UPPAAL[70]. Choi
and Watanabe method is quite different from the methods that we reviewed in that they focus on
consistency issues between the different design models rather than properties that other models are
interested in verifying.

7. Models Proposed But Not Yet Used for Verification and Testing.

Dargham and Nasrawi [71] propose a new approach for modeling hypermedia web applications
using an extended Finite State Machine (FSM). The authors first propose a classification for a web
application’s pages and links to capture most of the web application behavior such as the static,
dynamic, and interaction behaviors, then they represent the web application using an extended FSM by
adding types to its states and transitions which map to their proposed classification. Their model can
be used for testing and verification, because it is based on a formal notation that is has been used for
this purpose in many previous methods.

In place of using a FSM, Qian et al. [72] use a labeled transition system (LTS) to model hyper-media
web applications using a very similar classification to Dargham and Nasrawi. Then they extend the

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2008; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

28 M. ALALFI, J. CORDY, T. DEAN

LTS to add types to its constructs that correspond to their classification. Again their model can be used
for verification and testing, and is able to capture different behaviors of web applications such as static,
dynamic and interaction behaviors. However, both models still lack the ability to capture properties
related to security, sessions and cookies.

8. Conclusions and Open Problems

Little work has been done to compare different modeling methods used in web application validation.
Even though there has been small-scale comparison, to the best of our knowledge this is the first study,
other than our previous short summary [73], that provides a comprehensive review and comparative
study of modeling methods that are currently applied in the field of web application verification and
testing. All previous work has focused on the development process in general, and on the design phase
in particular. Comprehensive reviews and comparative studies such as ours can help in highlighting the
areas that need further research, and may help new researchers who are interested in the area to quickly
get an idea of what has been done, and what could be done. This is especially so if the study is able to
provide them with the strong and the weak points for each method, which may give them ideas on how
to combine the strong points in a unified improved new modeling method.

8.1. The State of the Art

Our study shows two different views of the methods we surveyed, a general categorization by modeling
level, and a detailed comparison by property coverage. Table IV summarizes the first one, where the
24 methods are categorized according to the level of web application modeling, as interaction behavior
modeling methods, navigation modeling methods, content modeling methods and hybrid modeling
methods (methods that model more than one level). In each category, methods are sorted according
to the notation used by the method. At the same time, comparison between the methods was also
done based on other criteria such as: application for the method (analysis, testing, verification or
some combination); whether the source code is required for the analysis or not; the way the method
solves the state space explosion problem; and finally, whether there is tool support for the method.
The second comparison, shown in Table V, aims at a comparison of the more specific details between
methods in the same category in particular, and with other methods in other categories in general. The
comparison is based on a combination of feature type and the level of web application modeling, using
the comparison criteria outlined in Section 3.4 as desirable properties for web site modeling. Based on
our analysis in this review we want to highlight the following ideas and results:

First, in Section 5.1, we saw that interaction modeling approaches are able to model the interaction
of web applications with the browser by proposing abstract models represented in different notations.
All of the proposed methods are able to model the basic browser back and forward operations, and
some are more mature, with the ability to model other browser features such as the history stack, page
caches, and user sessions. The authors discuss the ability to integrate their interaction models with the
static navigational model and try to do the integration manually, some try to detect web application-
browser interaction bugs by implementing their own model checker or by using existing testing and
model checking techniques. None of the models discuss integration with dynamic web applications, or
how the dynamic features affect their interaction models.

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2008; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

MODELING METHODS FOR WEB APPLICATION VERIFICATION AND TESTING 29

For content modeling methods, the focus of the discussed methods is on verifying the static content
of web applications. Up until now none has studied the verification of dynamic content for the same
features of correctness and completeness. This kind of study will be required to help with the increasing
dynamism of web applications.

In navigation modeling methods, the authors use either a UML-based models, Graph-based,
Statechart-based models or SDL-based model to represent the navigation level of the web. While UML
is the modeling standard for many applications including the web, it may not be the appropriate choice
for testing and verification. In order for the UML-based models to apply the testing and verification
techniques, the models should be translated into formal ones. The alternative choice is to use graph
based models that can be directly tested or model checked.

All the proposed UML-based models are able to capture the static features of the navigation, and to
represent the specific details of the web pages including the frame structure. In Graph-based models,
nodes represent different modeling semantics in the different methods, from simple page in the flat
model into page with frame structure. Nodes are used also to represent windows, links, actions, and in
some methods nodes are categorized into classes to reflect secure resources.

For hybrid modeling methods, some researchers model the web application as a whole, taking into
account all the modeling levels of the application, and then attempt to solve the problem of the state
space explosion in some way. Other methods model web applications at more than one level by using
separate models. Using separate models for the different levels of the web application help in reducing
the complexity of the model as well as decreasing its state space size which will have its effect in the
accuracy of the testing and the verification process. However, the integration between those models
should be declared explicitly and carefully by the modeling methods, whereas most of the discussed
methods fails to satisfy, and non is able to completely check or test web applications from all its
modeling levels.

8.2. Challenges for the Future

Ideally, we are looking for a model that is able to capture all the desirable features of web applications
at all modeling levels, as well as being able to validate the model using model checking. To the best
of our knowledge no such model yet exists, but perhaps it may be obtained by integrating some of the
existing modeling techniques.

In addition, web applications have the property of low observability, due to the difficulty of tracking
some outputs. Usually the output that is sent back to the user as HTML documents is being analyzed,
but there are also other kinds of output, such as changing the state of the server or the database, and
sending messages to other web applications and services. Up until now it appears that there is no
research which can address this issue.

Finally, there is also a need for work on security modeling techniques that are able to deal with the
complex, distributed structure of web applications, taking into account the concurrent access to web
servers and the other resources that are attached to them.

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2008; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

30 M. ALALFI, J. CORDY, T. DEAN

REFERENCES

1. Garzotto F, Paolini P, Schwabe D. HDM - A Model-Based Approach to Hypertext Application Design. ACM Trans. Inf.
Syst. 1993; 11(1):1–26.

2. Schwabe D, Rossi G. An object oriented approach to Web-based applications design. Theor. Pract. Object Syst. 1998;
4(4):207–225.

3. De Troyer O, Leune CJ. WSDM: A User Centered Design Method for Web Sites. Computer Networks 1998; 30(1-7):85–94.
4. Ceri S, Fraternali P, Bongio A. Web Modeling Language (WebML): a modeling language for designing Web sites.

Proceedings of the 9th international World Wide Web conference on Computer networks : the international journal
of computer and telecommunications netowrking, North-Holland Publishing Co.: Amsterdam, The Netherlands, The
Netherlands, 2000; 137–157.

5. Hassan AE, Holt RC. Architecture recovery of web applications. Proceedings of the 24th International Conference on
Software Engineering ICSE, ACM Press: New York, NY, USA, 2002; 349–359.

6. Antoniol G, Di Penta M, Zazzara M. Understanding Web Applications through Dynamic Analysis. Proceedings of the 12th
International Workshop on Program Comprehension IWPC, 2004; 120–131.

7. Di Lucca GA, Di Penta M. Integrating Static and Dynamic Analysis to improve the Comprehension of Existing Web
Applications. Proceedings of the Seventh IEEE International Symposium on Web Site Evolution WSE, IEEE Computer
Society: Washington, DC, USA, 2005; 87–94.

8. Cuaresma M, Koch N. Requirements Engineering for Web Applications - A Comparative Study. J. Web Eng. 2004;
2(3):193–212.

9. Koch N. A Comparative Study of Methods for Hypermedia Development. Technical Report 9905, LudwigMaximilians
-Universitt Mnchen November 1999.

10. Escalona MJ, Mejas M, Torres J. Methodologies to develop Web Information Systems and Comparative Analysis. The
European journal for the informatics professional June 2002; III, Issue no. 3.

11. Elbaum S, Rothermel G, Karre S, Fisher M. Leveraging user session data to support web application testing. IEEE
Transactions on Software Engineering May 2005; .

12. Offutt J, Wu Y, Du X, Huang H. Bypass Testing of Web Applications. The Fifteenth IEEE International Symposium on
Software Reliability Engineering (ISSRE ’04), 2004; 187–197.

13. Bellettini C, Marchetto A, Trentini A. WebUML: reverse engineering of web applications. Proceedings of the 2004 ACM
Symposium on Applied Computing SAC, Nicosia, Cyprus, 2004; 1662–1669.

14. Ricca F, Tonella P. Web Site Analysis: Structure and Evolution. Proceedings of the International Conference on Software
Maintenance, 2000; 76–86.

15. Di Sciascio E, Donini FM, Mongiello M, Totaro R, Castelluccia D. Design Verification of Web Applications Using
Symbolic Model Checking. Proceedings of the 5th International Conference of Web Engineering, ICWE, Lecture Notes in
Computer Science, vol. 3579, Springer, July 27-29 2005; 69–74.

16. Han M, Hofmeister C. Modeling and verification of adaptive navigation in web applications. Proceedings of the 6th
International Conference on Web Engineering, ICWE 2006, Palo Alto, California, 2006; 329–336.

17. Bordbar B, Anastasakis K. MDA and analysis of web applications. Proceedings of the Trends in Enterprise Application
Architecture, Lecture Notes in Computer Science, vol. 3888, Springer, 2005; 44–55.

18. Licata DR, Krishnamurthi S. Verifying Interactive Web Programs. Proceedings of the IEEE International Conference on
Automated Software Engineering, IEEE Computer Society, 2004; 164–173.

19. Alpuente M, Ballis D, Falaschi M. A Rewriting-based Framework for Web Sites Verification. Electr. Notes Theor. Comput.
Sci 2005; 124(1):41–61.

20. Alpuente M, Ballis D, Falaschi M, Romero D. A Semi-Automatic Methodology for Repairing Faulty Web Sites.
Proceedings of the Fourth IEEE International Conference on Software Engineering and Formal Methods SEFM, IEEE
Computer Society: Washington, DC, USA, 2006; 31–40.

21. Alpuente M, Ballis D, Falaschi M. Rule-based verification of Web sites. Int. J. Softw. Tools Technol. Transf. 2006; 8(6):565–
585.

22. Alpuente M, Ballis D, Falaschi M, Ojeda P, Romero D. A Fast Algebraic Web Verification Service. Proceedings of the
First International Conference on Web Reasoning and Rule Systems RR, 2007; 239–248.

23. Andrews AA, Offutt J, Alexander RT. Testing Web applications by modeling with FSMs. Software and System Modeling
2005; 4(3):326–345.

24. Haydar M, Petrenko A, ASahraoui H. Formal Verification of Web Applications Modeled by Communicating Automata.
Proceedings of the Formal Techniques for Networked and Distributed Systems - FORTE, Lecture Notes in Computer
Science, vol. 3235, Springer, September 27-30 2004; 115–132.

25. Di Lucca GA, Fasolino AR. Testing Web-based applications: The state of the art and future trends. Information & Software
Technology 2006; 48(12):1172–1186.

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2008; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

MODELING METHODS FOR WEB APPLICATION VERIFICATION AND TESTING 31

26. Rob P, Coronel C. Database Systems: Design Implementation And Management. Fifth edition edn., Course Technology,
January 2004.

27. Harel D. Statecharts: A Visual Formalism for Complex Systems. Science of Computer Programming June 1987; 8(3):231–
274.

28. Object Management Group (OMG) , Unified Modeling Language: Superstructure. http://www.omg.org/docs/formal/05-
07-04.pdf August 2005.

29. Object Management Group (OMG) , UML OCL2 Specification, version 2.0. http://www.omg.org/docs/ptc/05-06-06.pdf
June 2005.

30. Koch N, Kraus A. The expressive Power of UML-based Web Engineering. 2nd Int. Workshop on Web-oriented Software
Technology , 2002, 105-119.

31. Jackson D. Alloy: A New Technology for Software Modelling. Proceedings of the 8th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, TACAS, 2002; 20.

32. Wagner F, Schmuki R, Wagner T, Wolstenholme P. Modeling Software with Finite State Machines: A Practical Approach.
Auerbach Publications, 2005.

33. Gross J, Yellen J. Handbook of Graph Theory . Taylor and Francis, April 17, 2007.
34. Moonen L. A Generic Architecture for Data Flow Analysis to Support Reverse Engineering. Proceedings of the Second

International Workshop on the Theory and Practice of Algebraic Specifications (ASF+SDF’97), Sellink M (ed.), Electronic
Workshops in Computing, Springer-Verlag: Amsterdam, 1997.

35. Fischer J, Holz E, von Löwis M, Prinz A. SDL-2000: A Language with a Formal Semantics. Proceedings of Rigorous
Object-Oriented Methods, ROOM 2000, York, UK, 2000.

36. Klop J. Term Rewriting Systems. Handbook of Logic in Computer Science, Volumes 1 (Background: Mathematical
Structures) and 2 (Background: Computational Structures), Abramsky & Gabbay & Maibaum (Eds.), Clarendon, vol. 2.
1992.

37. Di Lucca GA, Di Penta M. Considering Browser Interaction in Web Application Testing. Proceedings of the 5th
International Workshop on Web Site Evolution (WSE), IEEE Computer Society, 2003; 74–.

38. Graunke PT, Findler RB, Krishnamurthi S, Felleisen M. Modeling Web Interactions. Proceedings of the Programming
Languages and Systems, 12th European Symposium on Programming, ESOP, Lecture Notes in Computer Science, vol.
2618, Degano P (ed.), Springer, April 7-11 2003; 238–252.

39. Chen J, Zhao X. Formal Models for Web Navigations with Session Control and Browser Cache. Proceedings of the 6th
International Conference on Formal Engineering Methods, ICFEM, Seattle, WA, USA, 2004; 46–60.

40. Anastasakis K, Bordbar B, Georg G, Ray I. UML2Alloy: A Challenging Model Transformation. Proceedings of the 10th
International Conference on Model Driven Engineering Languages and Systems MoDELS, 2007; 436–450.

41. Ballis D, Romero D. Fixing Web Sites Using Correction Strategies. Proceedings of the second International Workshop on
Automated Specification and Verification of Web Sites WWV 2006; 0:11–18.

42. Coelho J, Florido M. VeriFLog: A Constraint Logic Programming Approach to Verification of Website Content.
Proceedings of the International Workshops on Advanced Web and Network Technologies, and Applications, APWeb, 2006;
148–156.

43. Coelho, Florido. Type-Based Static and Dynamic Website Verification. Proceedings of the Second International Conference
on Internet and Web Applications and Services. ICIW 2007; 00:32.

44. Conallen J. Modeling Web Application Architectures with UML. Communications of the ACM 1999; 42(10):63–71.
45. Tonella P, Ricca F. Dynamic Model Extraction and Statistical Analysis of Web Applications. Proceedings of the

International Workshop on Web Site Evolution, IEEE Computer Society, 2002; 43–52.
46. Knapp A, Zhang G. Model Transformations for Integrating and Validating Web Application Models. Proceeding of

Modellierung, 2006; 115–128.
47. Castelluccia D, Mongiello M, Ruta M, Totaro R. WAVer: A Model Checking-based Tool to Verify Web Application Design.

Electr. Notes Theor. Comput. Sci. 2006; 157(1):61–76.
48. Cimatti A, Clarke EM, Giunchiglia F, Roveri M. NUSMV: A New Symbolic Model Checker. Proceedings of the

International Journal on Software Tools for Technology Transfer STTT 2000; 2(4):410–425.
49. de Alfaro L, Henzinger TA, Mang FY. MCWEB: A Model-Checking Tool for Web Site Debugging. Proceedings of the

WWW Posters, 2001; 86–87.
50. de Alfaro L. Model Checking the World Wide Web. Proceedings of the Computer Aided Verification, 13th International

Conference, Lecture Notes in Computer Science, vol. 2102, Berry G, Comon H, Finkel A (eds.), Springer, July 18-22 2001;
337–349.

51. Di Sciascio E, Donini FM, Mongiello M, Piscitelli G. AnWeb: a sytem for automatic support to web application
verification. Proceedings of the 14th international conference on Software engineering and knowledge engineering, July
14-19 2002; 609–616.

52. Di Sciascio E, Donini FM, Mongiello M, Piscitelli G. Web Applications Design and Maintenance Using Symbolic Model
Checking. Proceedings of the European Conference on Software Maintenance and Reengineering, IEEE Computer Society,

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2008; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

32 M. ALALFI, J. CORDY, T. DEAN

2003; 63–72.
53. Ricca F, Tonella P. Building a Tool for the Analysis and Testing of Web Applications: Problems and Solutions. Proceedings

of the Tools and Algorithms for the Construction and Analysis of Systems Genova,Italy, vol. 2031, 2 - 6 April 2001; 373–
388.

54. Winckler M, Palanque PA. StateWebCharts: A Formal Description Technique Dedicated to Navigation Modelling of
Web Applications. Proceedings of the 10th International Workshop on Interactive Systems. Design, Specification, and
Verification, DSV-IS, 2003; 61–76.

55. Harel D. Statecharts: A Visual Formulation for Complex Systems. Sci. Comput. Program. 1987; 8(3):231–274.
56. Syriani JA, Mansour N. Modeling Web Systems Using SDL. Proceedings of the Computer and Information Sciences -

ISCIS, 18th International Symposium, Lecture Notes in Computer Science, vol. 2869, Yazici A, Sener C (eds.), Springer,
November 3-5 2003; 1019–1026.

57. Benedikt M, Freire J, Godefroid P. VeriWeb: Automatically Testing Dynamic Web Sites. Proceedings of the 11th
International World Wide Web Conference, Hawai, U.S.A., May 2002.

58. Wu Y, Offutt J. Modeling and Testing Web-based Applications. Technical Report, George Mason University 2002.
59. Kung DC, Liu CH, Hsia P. An Object-Oriented Web Test Model for Testing Web Applications. Proceedings of the 24th

International Computer Software and Applications Conference COMPSAC,Taipei, Taiwan., 2000; 537–542.
60. Tonella P, Ricca F. A 2-Layer Model for the White-Box Testing of Web Applications. Proceedings of the International

Workshop on Web Site Evolution, IEEE Computer Society, 2004; 11–19.
61. Dı́az P, Montero S, Aedo I. Modelling hypermedia and web applications: the Ariadne Development Method, . Information

Systems 2005; 30(8):649–673.
62. Guerra E, Sanz D, Dı́az P, Aedo I. A Transformation-Driven Approach to the Verification of Security Policies in Web

Designs. Proceedings of the 7th International Conference on Web Engineering (ICWE), Como, Italy, 2007; 269–284.
63. Esther Guerra Jd. Attributed typed triple graph transformation with inheritance in the double pushout approach. Technical

Report UC3M-TR-CS-06-01, Universidad Carlos III de Madrid 2006.
64. Deutsch A, Marcus M, Sui L, Vianu V, Zhou D. A Verifier for Interactive, Data-Driven Web Applications. Proceedings of

the ACM SIGMOD International Conference on Management of Data, Baltimore, Maryland, USA, 2005; 539–550.
65. Deutsch A, Sui L, Vianu V. Specification and verification of data-driven Web applications. Journal of Computer and System

Sciences (JCSS) 2007; 73(3):442–474.
66. Miao H, Zeng H. Model Checking-based Verification of Web Application. Proceedings of the 12th International

Conference on Engineering of Complex Computer Systems (ICECCS), 2007; 47–55.
67. Brambilla M, Cabot J, Moreno N. Tool Support for Model Checking of Web Application Designs. Proceedings of the 7th

International Conference on Web Engineering (ICWE), Como, Italy, 2007; 533–538.
68. Zeng H, Miao H. Auto-Generating Test Sequences for Web Applications. Proceedings of the 7th International Conference

on Web Engineering (ICWE), 2007; 301–305.
69. Choi EH, Watanabe H. Model Checking Class Specifications for Web Applications. Proceedings of the 12th Asia-Pacific

Software Engineering Conference (APSEC), Taipei, Taiwan, 2005; 67–78.
70. Behrmann G, David A, Larsen KG. A tutorial on UPPAAL. Formal Methods for the Design of Real-Time Systems: 4th

International School on Formal Methods for the Design of Computer, Communication, and Software Systems, SFM-RT
2004, Bernardo M, Corradini F (eds.), no. 3185 in LNCS, Springer–Verlag, 2004; 200–236.

71. Dargham J, Nasrawi SA. FSM Behavioral Modeling Approach for Hypermedia Web Applications: FBM-HWA Approach.
Proceedings of the Advanced International Conference on Telecommunications and International Conference on Internet
and Web Applications and Services (AICT/ICIW), 2006; 199.

72. sheng Qian Z, Miao H, He T. An Approach to Modeling Hypermedia Web Applications. Proceedings of the Grid and
Cooperative Computing (GCC), 2007; 847–854.

73. Alalfi MH, Cordy JR, Dean TR. A Survey of Analysis Models and Methods in Website Verification and Testing.
Proceedings of the 7th International Conference on Web Engineering (ICWE), 2007; 306–311.

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2008; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

