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Abstract

In order to understand, analyze and modify software, we
commonly examine and manipulate its architecture.  For
example, we may want to examine the architecture at
different levels of abstraction.  We can view such
manipulations as architectural transformations, and more
specifically, as graph transformations.  In this paper, we
evaluate relational algebra as a way of specifying and
automating the architectural transformations.
Specifically, we examine Grok, a relational calculator
that is part of the PBS toolkit.  We show that relational
algebra is practical in that we are able to specify many of
the transformations commonly occurring during software
maintenance and, using a tool like Grok, we are able to
manipulate, quite efficiently, large software graphs; this
is a "win".  However, this approach is not well suited to
express some types of transforms involving patterns of
edges and nodes; this is a "loss".  By means of a set of
examples, the paper makes clear when the approach wins
and when it loses.

Keywords: software architecture, software maintenance,
graph transformation, relational algebra

1. Introduction

Reverse engineering plays an important role during
software maintenance and reuse.  It involves extracting
high-level structural information from source code, which
is the only accurate, complete, up-to-date representation
of a program.  This extracted information, such as
relations between software components, is often
represented as a graph; this graph is then manipulated or
transformed in order to further obtain information or
make the software system more easily understood.  In
previous work [5], we identified various transformations -
specifically software architectural transformations - that
commonly occur during software maintenance (see Table
1).   Since the software structure is modeled as a graph, it
follows that the transformations occurring on this
structure can be thought of as graph transformations [2].

These graph transformations can be formally specified
and subsequently automated.  Using an executable
specification language, we can test the validity of the
specifications by executing them on sample structures.
Recently [6], we demonstrated how to specify these
transformations using a high-level, visual, graph-rewriting
language called PROGRES [16].  The user enters the
transformation rules, and the PROGRES tool then
translates these specifications into code that is then
compiled to a stand-alone prototype.  Although
PROGRES proved to be useful for writing specifications
of architectural transformations, and in testing and
debugging the specifications on small graphs, it could not
handle the large graphs representing real software
structures.

This paper evaluates the use of relational algebra and
the Grok [9, 15] relational calculator for architectural
transformations.  Surprisingly, there is much we can do
with a relational calculator to help solve the various needs
of dealing with large software systems [7,9].  Grok offers
a flexible and general notation to help us query and
modify software structures.  In this paper, we specify
various architectural transformations using Grok and
apply them to two large systems: LINUX and an I.B.M.
code optimizer.  The main win in using Grok is that it is
efficient in processing large graphs; a loss in using Grok
is that there are some transformations that are difficult to
express using relational algebra.  Grok has some non-
relational algebraic constructs which we can use to
express these transformations, yet the Grok execution
times for such transformations are slow, even in
processing small graphs.  In this paper we characterize the
wins of relational algebra, i.e., those transformations
which can be easily expressed in Grok and such Grok
specifications are efficient even when applied to very
large graphs.  We also characterize the losses, i.e., those
transformations which cannot be easily expressed in Grok
or whose Grok specifications are inefficient even when
applied to small graphs.

This paper is organized as follows: Section 2
describes the graph representation we assume for software
architectures.  Section 3 provides an overview of
relational algebra, and Section 4 illustrates how we can
use a tool like Grok to specify a variety of architectural



transformations.  Section 5 reports results in using Grok
to manipulate two large software systems.  Section 6
discusses the limitations of relational algebra, and Section
7 outlines how we can use Grok's non-relational algebraic
constructs to work around these limitations.  Section 8
concludes the paper.

Table 1.  Architectural Transformations
Commonly Occurring during Reengineering

CLASS TYPE DESCRIPTION

Lifting

Lift low-level Use edges
up the system hierarchy in
order to study the structure
at different levels of
abstraction [7,9,14]

Architecture
Understand-
ing

Hide
Interior/
Exterior

Eliminate information to
make the structure more
understandable by
zooming in and out to
concentrate on views of
interest [9]

Diagnostic

Given high-level
unexpected edges, lower
them down the system
hierarchy to identify low-
level unexpected edges
[7,14,17]

Architecture
Analysis

Sifting
Mark components that play
some role in the desired
change of the software
structure [5, 7]

Forward
Repair

Alter the extracted
architecture (or concrete
architecture) to be more
consistent with the mental
model of the software (i.e,
conceptual architecture)
[17]

Architecture
Modification

Reverse
Repair

Alter the conceptual
architecture to be more
consistent with the
concrete architecture [4,
17]

2. Graph Representation of Software
Structures

It is common to use a directed typed graph G to represent
the system’s architecture (see Figure 1):
• Each node in G represents a component in the

system. In Figure 1, we have two types of nodes:
modules and subsystems.  Modules are drawn using

boxes with thin lines, while subsystems are drawn
using boxes with thick lines.  Each node is labeled by
the component’s name.

• Each edge in G represents a relation between
components. In Figure 1, there are three types of
relations: Contain, UseVar, and UseProc.  The
Contain relation defines the system hierarchy, which
is a tree.  Figure 1 uses thick, solid edges to draw the
Contain relation.  If x is contained in y, we say that y
is x’s parent. We refer to nodes as siblings if have the
same parent and are distinct.  We say that x is a
descendant of y if there is a non-empty path of
Contain edges from y to x.  Besides the Contain
relation, there are dependency relations between
components such as the UseVar and UseProc
relations.  In Figure 1, the UseVar relation is
represented as thin, solid edges, while the UseProc
relation is represented as dotted edges.

S

T V

W a b

c

e

d

Figure 1. Graphical representation of a software
architecture. Nodes representing subsystems
have thick lines; nodes representing modules
have thin lines.  In this example, S contains
subsystems T and V; T contains module e and
subsystem W; subsystem W contains modules c
and d; and subsystem V contains modules a and
b; module a uses b, c and d; c uses b; and d
uses e.  There are two different types of use
relations here: UseVar and UseProc.

Graph nodes and edges may have associated
attributes, which store information that is not
conveniently expressed within the graph structure itself.
For example, we may want to associate with each
subsystem node the names of programmers who have
worked on that subsystem using the programmers_names
attribute.  In the context of this paper, we assume the
graphs are not attributed.

Contain
UseProc
UseVar



We now turn to how relational algebra can be used to
manipulate such graphs.

3. Binary Relational Algebra and Grok

Binary relational algebra, as defined by Tarski [18] and
refined by Schmidt and others, can be used to manipulate
typed graphs.  It provides axioms that define the effect of
operators such as relational composition and relational
union, along with the identity relation, the empty relation
and the full (or completely connected) relation.  Grok is a
relational calculator which reads databases that represent
sets of relations (graphs) (see Section 3.1), and which
allows one to compute new relations and sets using Tarski
operators (see Section 3.2).

3.1. Grok Database

In our work, we are using the PBS system to extract the
"facts" from source code [15].  The format of the facts is
given in ASCII and is called RSF (Rigi Standard Form)
[13].  Grok reads an RSF file loading it in its memory-
resident database using the "getdb" command, and then
uses operators to manipulate the facts.

Figure 1 shows a graph in which the nodes are {S, T,
V, W, a, b, c, d, e}.  The edges are:

Contain = {(S,T), (S,V), (T,e), (T,W),
(W,c), (W,d), (V,a), (V,b)}

UseVar =  {(a,d), (c,b), (a,c)}
UseProc = {(a,b), (a,c), (d,e)}

In RSF, these facts are stored as:
Contain S T
Contain S V
Contain T W
Contain T e
Contain W c
Contain W d
Contain V a
Contain V b
UseVar a d
UseVar a c
UseVar c b
UseProc a b
UseProc a c
UseProc d e

Grok also handles entity and relation attributes;
specifically, it can read TA files [10,11], build an internal
representation of it, and process it.

3.2. Grok Operators

The set of Grok operators used to manipulate a typed
graph include:

Union: R1 + R2, e.g., U = UseVar + UseProc = {(a,d),
(c,b), (a,b), (a,c), (d,e)}.

Intersection:  R1 ^ R2, e.g., UseVar ^ UseProc = {(a,c)}.

Inverse: Inv R1, e.g., Parent = inv Contain = {(T,S),
(V,S), (e,T), (W,T), (c,W), (d,W), (a,V), (b,V)}.

Subtraction: R1 - R2, e.g., U - UseVar = {(a,b), (a,c),
(d,e)}.

Relational Composition: R1 o R2, which produces all
edges that can be drawn by following an R1 edge
and then an R2 edge, e.g., Contain o UseVar =
{(V,c), (V,d), (W,b)}.

Identity: id s, the identity relation on set s.  e.g., if s =
{a,b,c}, then id s = {(a,a), (b,b), (c,c)}.  ID is the
identity relation on all entities in the database.

Transitive closure: R+, produces all edges that can be
drawn by following one or more R edges, e.g.,
U+ = {(a,d), (c,b), (a,b), (a,c), (d,e), (a,e)}.

Reflexive transitive Closure: R*, produces all edges that
can be drawn by following zero or more R edges.

Domain of a relation: dom R; e.g., dom Contain = {S, T,
W, V}.  DOM produces the domain of all
relations in the data base.

Range of a relation: rng R; e.g., rng Contain = {T, V, W,
e, d, c, b, a}.  RNG produces the range of all
relations in the data base.

Entities of R: ent R,e.g., ent UseVar = {a, b, c, d}.  ENT
produces all entities in the data base.

Set Projection:  s . R produces set t: start from an entity
belonging to set s and follow an R edge; the
resulting entity belongs to set t.  R . s produces
set t: start from an entity belonging to set s and
follow the inverse of R; the resulting entity
belongs to set t.

Cross Product: s1 X s2, e.g., if s1 = {a,b} and s2 =
{c,d}, then s1 X s2 = {(a,c), (a,d), (b,c), (b,d)}



Grok has other operators; for a complete listing refer
to http://swag.uwaterloo.ca/pbs/.  (The ones mentioned
here are sufficient for the reader to follow through the
examples discussed in this paper.)  Grok is augmented
with programming features (outside of the relational
algebra world) such as loops and if-then-else statements.
(RELVIEW [1], another system that supports the
manipulation of relations and relational programming,
also has such programming features.)  These were added
to the language to provide more flexibility in using Grok.
For example, during software maintenance, a software
maintainer may want to iterate through all Module
entities, determining which of them are involved in one
and only one use relation.  Any iteration of this kind
obviously requires a loop construct.

Given a software graph like that shown in Figure 1,
we can use relational algebra to define a set of family
relations and sets.  These are given in Table 2.  (The
notation shown in Table 2 will be used throughout this
paper.)  These relations, as well as those provided by the
software graph, will be used to specify the various
architectural transformations in Grok.

Table 2. Family Relations and Sets

TYPE OF RELATION OR
SET

RELATIONAL
ALGEBRAIC DEFINITION
(REFER TO SECTION 3.2)

Contain or Child Relation:
C

C := Contain
(given by the software graph)

Use Relation: U U := UseVar+UseProc

Parent Relation: P P := inv C

Sibling Relation: S S := P o C - ID

Descendant Relation: D D : = C+

Reflexive Descendant
Relation: Do

Do := C*

Ancestor Relation: A A := P+

Reflexive Ancestor
Relation: Ao

Ao := P*

The Set of Subsystems: SS SS := dom C

The Set of Modules: MOD MOD := ENT - SS

In this section, we have provided an overview of
Grok.  We now turn to a description of a variety of
architectural transformations and show how we can use
relational algebra, specifically Grok, to specify them.

4. Wins:  Common Software Architectural
Transformations using Grok

In this section, we specify a variety of architectural
transformations in Grok. For details on these
transformations, the reader is referred to [5].   For each of

the transformations, we assume we have extracted the
software structure using some tool such as PBS or RIGI.
The containment information - i.e., the system hierarchy -
has been determined.

The following transformations are given by Grok
scripts, which can be executed by the Grok environment.
All of the scripts given below assume that we have
already defined the family relations such as Parent,
Sibling, and Descendant given in Table 2.

4.1. The Lift Transformation

The lift transformation is used to raise low-level use
relations between modules to higher levels in the system
hierarchy in order to study the architecture at different
levels of abstraction.  There are a variety of lifting
functions, but a general one is as follows: if module x uses
module y, and x is a descendant of p and y is a descendant
of q, then we lift the edge (x,y) to (p,q) only if p and q are
distinct nodes and p is not a descendant or ancestor of q.
The resultant edges are formed between subsystem nodes.
In other words, we have abstracted module-module
relations to subsystem-subsystem relations.  We can
express this in relational algebra using the following
statement:

HLU := (D o U o A) - ID - D - A

HLU (high-level use) is the set of new edges.  We
can read the above expression as, start at some node (say
p) and follow a Descendant edge then follow a Use edge
then follow an Ancestor edge reaching another node (say
q).  We add edge (p,q) to the set HLU relation provided
that p and q are distinct (that is why we subtract ID from
the resultant set of relations) and that there is no
Descendant edge from node p to node q and that there is
no Ancestor edge from node p to node q.  It is important
to note here that we modify the database only at the
source and target nodes of the path defined by HLU above
- that is, by adding relations between them.

4.2. The Hide Interior Transformation

When we are not interested in the details of a particular
subsystem, but rather how it interacts with the rest of the
system, we can hide the interior of that subsystem using
the Hide Interior transformation.  For example, let us
assume we want to hide the interior of subsystem T of
Figure 1.  For each component x in T that uses a
component y outside of T, we add an edge from T to y.
For each component x in T that is used by another
component y outside of T, we add an edge from y to T.
Finally, we delete all components in T (i.e., nodes that are
descendants of T).  To express this in Grok, we use six
statements:



(1) S := {"T"}
(2) SD := S . D
(3) TargetU := SD . U - SD
(4) SourceU := U . SD - SD
(5) NewU := (S X TargetU) +

(SourceU X S)
(6) delset SD

In (1), we specify which subsystem whose interior we
would like to hide.  If we want the name to be a parameter
to this Grok program, we can write, S := {$1}.  In (2), we
calculate the set of all nodes that are descendants of S.
(We start at a node in the set S - only one node in this
case - and we traverse all descendant edges; the nodes we
land on belong to the set SD.)  In (3), we calculate the set
of nodes that are used by the descendants of S but that are
not descendants of S.  Similarly, in (4) we can calculate
the set of nodes that use the descendants of S.  In (5), we
create a new set of use relations, called NewU; an edge
from S to y is added, if y belongs to the set TargetU, and
an edge from x to S is added if x belongs to the set
SourceU.  Finally, in (6), we delete S's descendants (SD)
from the database.

4.3. The Hide Exterior Transformation

Like the previous two transformations, the hide exterior
transformation is used during architectural understanding
when we are trying to simplify the information extracted
from source code by creating different views.  This
transformation accepts the graph representing the
architecture and the name of a particular subsystem we
are interested in, and hides all the nodes and edges outside
of the subsystem.  This is important during architectural
understanding when we want to focus our attention on
one subsystem and answer questions like, "which files in
the subsystem are used by other subsystems? Or, which
files in the subsystem use files belonging to other
subsystems?  For example, if we want to hide the exterior
of subsystem V of Figure 1, we would do the following.
For each node x in V, if it is being used by something
outside of V, then we add a sell (or export) edge between
V and x since V “sells” x to components outside of it.  If
node x in V uses something outside of V, then we add a
buy edge between the x and V since it “buys” a service
outside of V.   Thus, V sells b and lets a buy exterior
services.  Finally, we delete all nodes and edges outside of
V.  To express this in Grok, we write:

(1) S := {"V"}
(2) SD := S . D
(3) Ext := ENT - SD - S
(4) SourceBuy := (U . Ext) ^ SD
(5) TargetExport := (Ext . U) ^ SD
(6) Buy := SourceBuy X S
(7) Export := S X TargetExport
(8) delset Ext

Statement (1) specifies S which is the subsystem
whose exterior we would like to hide.  Statement (2)
calculates SD, the set of all nodes that are descendants of
S.  Statement (3) calculates Ext, the set of nodes that are
exterior to S.  Statement (4) calculates SourceBuy, the set
of nodes that are descendants of S which use nodes in Ext.
Statement (5) calculates TargetExport, those nodes in SD
that are used by nodes in Ext.  In other words, they are
exported by S to the outside world.  Statement (6) creates
a new set of relations called Buy which are formed
between each of the SourceBuy nodes and S.  Statement
(7) creates a new set of relations called Export which are
formed between S and each of the TargetExport nodes.
Finally in statement (8), we delete the nodes that are
exterior to S from the database.

So far, we have described how we can specify three
software graph transformations using Grok.  The first
three transformations can be used when we are trying to
navigate the software in an effort to understand the
software architecture. Lifting abstracts low-level
interactions into higher-level interactions.  Hiding allows
us to zoom in and out to concentrate on views of interest.

4.4. The Diagnostic Transformation

After lifting the low-level edges (Section 4.1), we may
find unexpected or undesirable interactions between
nodes.  For example, Tran discovered that after lifting the
low-level facts extracted from a LINUX kernel, the Inter-
Process Communication subsystem (IPC) unexpectedly
uses the Network Interface subsystem [3, 17].  The
question that arises at this point, is what are the module-
module interactions causing this unexpected high-level
dependency?  We can isolate these unexpected
interactions by performing diagnostic transformations.
We identify a high-level use edge between subsystems
that is not expected and mark it as an unexpected edge.
Then we lower [9] it (the reverse of the lifting), by
identifying lower-level edges that cause the higher-level
unexpected edge.  We determine the unexpected lower-
level edges as follows. If there is an unexpected edge
(x,y), then any use edge from x, or any of x’s descendants,
to y, or any of y’s descendants, is marked as  unexpected
as well.  In Grok, we write:

(1) HLUNX :={x} X {y}
(2) UNX := (Ao o HLUNX o Do) ^ (U + HLU)

UNX is the set of unexpected dependencies causing the
high-level unexpected dependency, HLUNX.

4.5. Sifting Transformations

During architecture analysis, we often need to determine
how to change the software system. This requires that we



identify what parts need to be changed.  Sifting
transformations sift the software components looking for
components that will play a role in the change.  They
identify such components by examining their
interrelationships with other components. For example,
we may wish to find and eliminate cycles in the software
structure.  To do so, we need to identify the components
that are involved in a cycle.  We may want to modify the
software architecture to restructure it to fit the cycle-free
layering paradigm [7].  The components of the system are
to be organized in layers so that each component uses
only components belonging to the same layer or the layer
beneath it.   In order to restructure the architecture in this
way, we can first identify components that are candidates
for the top and bottom layers. Components that are not
used but use others potentially belong to the top layer, and
components which are used but do not use others
potentially belong to the bottom layer.  The following are
some sifting transformations specified in Grok:

(1) Cycle := U+ ^ ID
(2) TopLayer := dom U - rng U
(3) BottomLayer := rng U - dom U
(4) UseSiblings := dom ((U o S) ^ ID)
(5) UsedBySiblings :=dom ((S o U) ^ ID)
(6) Outcast := (MOD - UseSiblings -

UsedBySiblings)

Grok statement (1) determines those components
belonging to a U-cycle.  If component x belongs to such a
cycle, then this statement creates the Cycle relation (x,x).
Statement (2) determines those components that are
candidates for the top layer of a layering architecture.
Similarly, statement (3) determines those components that
are bottom-layer candidates.  Grok statement (4)
determines those components that use at least one other
component within the same subsystem.  Statement (5)
determines those components that are used by at least one
component within the same subsystem.  The last
statement determines those modules that neither use nor
are used by other modules within the same subsystem:
they are referred to as outcasts.  Determining such a set
may prove beneficial when making decisions as to how to
restructure the software; perhaps these outcasts should
belong to another subsystem.

Another feature we may want to deduce to help us
determine how best to restructure the software is the
following.  If a module x is used by precisely one other
module (call it y), then such a module is a candidate for
being combined with y.  In this case, we may want to
determine the relation "local_of", so if (x,y) belongs to the
"local_of" relation then that means that x is only used by y
and that we may consider moving x to be part of y.  This
is our first example of a "loss" using relational algebra:

pure relational algebra is not sufficient in order to express
this transformation.  We express it in Grok as follows:

local_of := EMPTYREL
for x in MOD

WhoUsesX := U . {x}
if # WhoUsesX = 1 then

local_of :=
    local_of + {x} X WhoUsesX

end if
end for

In this example, we make use of Grok's for-loop
construct as well as its if-then-else construct, which are
not inherent in pure relational algebra.  Note Feijs et. al.
[7] describe this type of transformation, and although they
advocate the use of relational algebra in software analysis
in that paper, they do not describe how this transformation
can be done in pure relational algebra.  This loss is
exemplified in Section 5, where we will see how Grok
performs this transformation much slower than other
transformations.  In Section 6, we will discuss other
losses of relational algebra.

Having described some sifting transformations, we
can now turn to an example of how we specify an
architectural modification transformation.

4.6. The Kidnapping Transformation

The kidnapping transformation is an architectural
modification transformation used to restructure the
software to minimize inconsistencies between the
concrete and conceptual architectures [17].  Specifically,
kidnapping moves a program entity, module or subsystem
from one parent (e.g. subsystem) to a new one in order to
eliminate unexpected interactions (determined by
diagnostic transformations).  In this section, we will show
how to use Grok to specify the kidnapping of a module
from one subsystem to another.  Specifically, we provide
Grok statements that specify the moving of an entity x to
subsystem y.  Perhaps we have decided to move x since it
was an outcast in its own subsystem and that it was
involved in an unexpected dependency.

Victim := {x}
NewParent := {y}

% Delete relation between Victim and
% its parent
old_parent := Victim . P
C := C - old_parent X Victim

% Add relation between victim and its
% new parent
C := C + NewParent X Victim

% Now that containment information has



% changed, recalculate the family
% relations
P := inv C
S := P o C - ID
D := C+
Do := C*
A := P+
Ao := P*

4.7. Summary

In this section, we showed how Grok and relational
algebra can be used to specify the graph transformations
commonly occurring during software maintenance. In
general these graph transformations identify some pattern
in the database (graph) and modify the database in some
way [1,7,12].  The next section describes the application
of the Grok scripts given in this section to production
software systems.

5. Application to Two Software Systems

In this section, we present two case studies.  We applied
the architectural transformations described in Section 4 to
two large systems: LINUX kernel release 1.2.0 and an
IBM commercial code optimizer.  (See Table 3.)  We
used the PBS toolkit to extract the facts from both
systems; the RSF files generated were then read in by
Grok.  The Grok scripts for the transformations were then
executed on each database.  Table 4 shows the timings for
running the transformations on a general-purpose
compute server (SUN Enterprise 450/4400 with Solaris 8
operating system).

Table 3.  Two Systems Studied

FEATURES OPTIMIZER LINUX

Number of Lines of Code 250,000 700,000

Number of Subsystem Nodes 70 129

Number of Module Nodes 941 1021

Number of Use Edges 9049 12007

Number of Contain Edges 1007 1149

Depth of System Hierarchy
(i.e., containment tree)

3 6

The execution times, reported in Table 4, show the
practicality of using a relational calculator, like Grok, to
perform software transformations on real large software
graphs.  The slowest transformation was Local_of since

this transformation requires a loop construct to iterate
through all module entities.  The reader should observe
that although the LINUX graph is larger than the compiler
graph, it took less time to apply the transformations to the
LINUX graph than to the compiler graph.  Perhaps this is
due to the fact that the LINUX system's structure is more
hierarchical.

Although these results are encouraging, Grok and other
relational algebraic techniques are limited to which
patterns they can identify in the graph.  The next section
discusses such losses of using relational algebra.

Table 4.  Grok Execution Times for various
Architectural Transformations

TRANSFORMATION OPTIMIZER LINUX

Build family relations 1.2 sec 0.8 sec

Lifting 0.6 sec 0.7 sec

Hide Interior (of a subsystem at
the highest level in the
subsystem hierarchy)

0.2 sec 0.2 sec

Hide Exterior (of a subsystem
at the lowest level in the
subsystem hierarchy)

0.3 sec 0.3 sec

Diagnosis (given an unexpected
interaction between subsystems
at the highest level in the
subsystem hierarchy)

0.3 sec 0.3 sec

Outcasts 5.8 sec
(79 found)

2.4 sec
(268

found)
Local_Of 103 sec

(415 tup.)
62.7 sec

(116 tup.)

Kidnapping one node 1.9 sec 1.3 sec

6. Losses:  Limitations of Relational Algebra

We have seen in the previous section that Grok is able to
process large software systems reasonably well. In
Section 4.5, we discussed how some transformations
require that we step through the entities to ascertain
certain properties.  This requires a loop construct that is
not inherent of relational algebra, and Grok has it
specifically to be able to handle such types of
transformations.   There are other limitations to relational
algebra.  This section describes some of them.



There are two main losses of using relational algebra.
First of all, we are restricted in the types of patterns we
can find using algebraic expressions.  This section gives
an example of such a pattern.  Second of all, once we
have determined that the pattern exists in the database,
there is no inherent way of marking the whole matched
pattern.  More specifically, there is no inherent way to
mark and bind each of the nodes and edges visited.  For
each traversed path, all we have is a relation (s,t), where s
is the source node of the path and t is the target node;
what nodes/edges visited along the path from s to t are
lost.  Thus relational algebra is not well suited for
transformations where we need to remember or access
any of the nodes or edges along the visited paths.  We
now discuss an example that illustrates these losses.

Figure 2.  The Merge Transformation.  This
transformation states that if we have four
modules represented by n1, n2, n3, and n4 which
interact with each other completely, we can
merge them into one new module.  Note that a
two-way arrow shown indicates that there is a
two-way Use relation.

In redesigning a software's architecture, software
maintainers may want to merge tightly coupled modules
into a single module.  In Figure 2, the transformation
shown illustrates that if we have four modules which
interact with each other completely (i.e., each module
interacts with the other three), we can merge them into
one new module.

To perform the "merge" transformation, we need to
first identify the pattern matching the left-hand side of the
above rule.  We can try to represent this pattern as a path
starting from n1 and returning to n1, where some nodes
and edges are visited more than once:  (There are
obviously many ways to do this; however there is no way
to do this without having repeated nodes or edges.)

P := id(n1) o Use o id(n2) o Use o id(n1)
o Use o id(n3) o Use o id (n1) o Use
o id(n4) o Use o id(n1) o Use o
id(n2) o Use o id(n4) o Use o id(n2)
o Use o id(n3) o Use id(n2) o Use o
id(n4) o Use id(n3) o Use o id(n4) o
Use o id(n1) ^ ID1

This expression for P attempts to trace out a path that
corresponds to the edges of the left-hand side of the
merge transformation.  Unfortunately, it fails to capture
the meaning of the pattern, because terms such as n2 do
not correspond to particular nodes.  Since pure relational
algebra does not allow us to mark the nodes along the
path and hence, bind them to variable names, then we
cannot perform unification, whereby variables with the
same name are bound to the same node.  It is important to
note here that even if we had the ability to unify variables,
P simply represents a set of identity relations at the nodes
matching n1; it does not represent the set of whole
matched patterns.  Thus, we cannot conveniently
complete this transformation by replacing the interacting
modules by one module since we do not know, at the very
least, where the nodes matching n2, n3, and n4 are.

In summary, relational algebra is not well suited for
transformations which (1) involve patterns that require
unification, and/or  (2) require knowing where the
instances of the pattern are.  Next, we outline how we
make use of Grok's non-relational algebraic features to
work around these limitations.

7. Generalized Pattern Matching Using
Grok

In this section, we describe an approach that we
developed in order to use Grok to perform generalized
pattern matching.  Essentially, the approach finds all
subgraphs in the database which are isomorphic to the
pattern we are searching for.  Because subgraph
isomorphism is an NP-complete problem, the algorithm is
inherently slow.

The main idea behind the algorithm is to generate
combinations of nodes in the database that match the
pattern.  If the pattern contains four nodes, n1, n2, n3 and
n4, and the graph contains n nodes, then the number of
combinations is O(n4).  Obviously, we want to reduce this
number; thus we implemented a discrete relaxation [8]
algorithm to reduce the node sets assigned to n1, n2, n3
and n4, where each node set represents the set of
possibilities for that particular node.  We will not get into
the details of this component of the algorithm as it is
beyond the scope of this paper.

                                                          
1 We need to intersect the expression with the IDENTITY relation in
order to ensure that we end off where we started from.

transform
n1 n3
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Once we've reduced the node sets as much as
possible, we then generate each combination and we test
it against the relations given by the pattern.  Once we
have a match, we need to save this information and
somehow mark the entities.  To do so, we can use a two-
dimensional array P[I,N], where I is the number of
instances found of the pattern, and N is the number of
nodes in the pattern.  (For example, P[2,4] records the 4th

node of the second instance of the pattern.)  Grok does not
have arrays, but we simulated arrays using Grok's ability
to add prefixes and suffixes to elements of a set.  We use
these features to create a set, P, whose entities have
prefixes and suffixes indicating which instance they
belong to and which node in the pattern they are bound to.

Figure 3.  The Lifting Transformation.  A =
Ancestor  relation; U = Use relation; HLU = high-
level use relation; Nodes representing
subsystems are drawn using boxes with thick
lines; Nodes representing modules are drawn
using boxes with thin lines.

Let us consider a simple example in order to make
this approach clear.  Figure 3 shows the lifting
transformation (Section 4.1) rule represented graphically:
Since we showed in Section 4.1 how this transformation
can be specified using basic relational algebraic operators,
we do not need to use our more general algorithm to find
the matches.  Nonetheless, this transformation is a good
example to show how working around relational algebra's
limitations, we can tremendously slow down Grok's
performance.

In finding all the subgraphs in the graph shown in
Figure 1 matching the left-hand side of the rule, we first
assign nodes n1 and n3 to all subsystem nodes in the
database, and assign nodes n2 and n4 to all module nodes.
After using discrete relaxation to reduce the node sets
further, we test each combination against the relations
given by the pattern; if it matches, we add the
combination to P, a simulated two-dimensional array.
The Grok script used to perform lifting in this way took
23.6 seconds to produce P:

T c V b
 V a T c

P  = V a T d
 V a W c
 V a W d
 W c V b

Each row represents one match.  The first row
indicates that node T of Figure 1 has been bound to node
n1 of the pattern, node c has been bound to node n2 of the
pattern, node V has been bound to node n3, and lastly,
node b has been bound to node n4 of the pattern.  The
reader should note that an entity can belong to more than
one match.

Recall that encoding the pattern simply as a path as
given in Section 4.1 and not in this generic way, Grok
was able to perform lifting on a much larger graph in less
than 1 second (Table 4).  Also, PROGRES, a general
graph-matching tool, is able to perform lifting on the
small graphs such as that shown in Figure 1 in less than 1
second, but takes approximately 10 minutes to process the
code optimizer or LINUX.

In summary, in this section, we described how we
can work around the limitations of relational algebra
using Grok.  Since Grok is not tuned for the
combinatorics involved in performing subgraph-
isomorphism testing, the algorithm is slow even for small
graphs.

8. Conclusions

Recently, there has been considerable work in software
maintenance involving the use of relational algebra to
understand, analyze, and modify software architectures
[7, 9-12].  This paper provided an overview of the types
of transformations we can perform using relational
algebra.  We focussed on one tool - Grok - and using this
tool, we illustrated the wins and losses of the algebraic
approach in identifying and manipulating patterns in
software graphs.  In summary, many of the types of
transformations that commonly occur during software
maintenance can be specified easily and elegantly in
Grok.  These executable specifications can be used to
process large software graphs relatively efficiently.  These
are wins.  However, there are losses as well.  Relational
algebra is not well suited for generalized pattern
matching; the types of transformations that cannot be
easily specified using relational algebra are quite simply
those that require storing some or all of the nodes and
edges which are visited along the path that represents the
pattern.  We showed in this paper how we use some of
Grok's features to work around this limitation, yet even

HLU
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n1 n3

n2 n4
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n1 n3
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for small graphs, Grok was slow.  In the future, we hope
to explore ways to make Grok more efficient in handling
general pattern matching.  Undoubtedly, this will involve
being able to represent and manipulate n-ary relations.
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