
Proactive Auto-scaling of Resources for Stream
Processing Engines in the Cloud

Tarek M. Ahmed Farhana H. Zulkernine James R. Cordy

School of Computing, Queen’s University
Kingston, ON, Canada

{tahmed,farhana,cordy}@cs.queensu.ca

ABSTRACT
Large scale applications nowadays continuously generate ma-
ssive amounts of data at high speed. Stream processing en-
gines (SPEs) such as Apache Storm and Flink are becoming
increasingly popular because they provide reliable platforms
to process such fast data streams in real time.

Despite previous research in the field of auto-scaling of re-
sources, current SPEs, whether open source such as Apache
Storm, or commercial such as streaming components in IBM
Infosphere and Microsoft Azure, lack the ability to automat-
ically grow and shrink to meet the needs of streaming data
applications. Moreover, previous research on auto-scaling
focuses on techniques for scaling resources reactively, which
can delay the scaling decision unacceptably for time sensi-
tive stream applications. To the best of our knowledge, there
has been no or limited research using machine learning tech-
niques to proactively predict future bottlenecks based on the
data flow characteristics of the data stream workload.

In this position paper, we present our vision of a three-
stage framework to auto-scale resources for SPEs in the
cloud. In the first stage, the workload model is created using
data flow characteristics. The second stage uses the output
of the workload model to predict future bottlenecks. Finally,
the third stage makes the scaling decision for the resources.
We begin with a literature review on the auto-scaling of
popular SPEs such as Apache Storm.

Keywords
Streaming data, auto-scaling, elasticity, machine-learning

1. INTRODUCTION
Stream Processing Engines (SPEs) are frameworks that

can reliably process and query stream data at high vol-
ume and high speed. SPEs, such as Apache Storm [3] and
Flink [1], are becoming increasingly popular with the emer-
gence of new data sources that can produce massive amounts
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of data in short periods of time. Examples of such sources
include social networks such as Facebook and Twitter, and
networks of smart devices in Internet of Things (IoT) [11].
Cisco [5] expects that about 50 billion devices will be con-
nected to the internet by 2020, generating massive amounts
of fast streaming data.

Modern organizations require real-time analysis of their
high speed streaming data, and use SPEs to provide timely
feedback and decision-making. Because of its cost effective
pay-as-you-go model, organizations increasingly choose to
host their systems including SPEs in the cloud.

To benefit from the pay-as-you-go model, a cloud ser-
vice should be able to optimize the usage of resources and
minimize latency. Major cloud vendors have well estab-
lished auto-scaling techniques to handle fixed, predictable
workloads such as database queries. Streaming data on the
other hand is dynamic, unbounded and unpredictable, and
traditional auto-scaling techniques are not adequate. New
auto-scaling techniques are, therefore, required to analyze
the data flow characteristics and use the knowledge hiding
within this data to make more reliable and adaptive scaling
decisions.

In this position paper we present our vision of a novel
framework to auto-scale cloud resources for streaming data
in popular SPEs such as Apache Storm. Our vision explores
two fundamental ideas. First, we examine the straming data
flow characteristics such as speed and acceleration. For ex-
ample, the speed of a stock market stream is directly affected
by the occurrence of a major event such as a natural disaster.
By analyzing the data stream and measuring its speed and
acceleration, we can expect the upcoming stream volume,
and further predict the required cloud resources.

Second, we explore the use of streaming machine learning
techniques to classify workloads and predict future bottle-
necks. Our motivation is the fact that the data flow charac-
teristics of the streaming data can be thought of as another
streaming data source that can be analyzed using an SPE.

While auto-scaling of resources is not a new topic in cloud
research, little has been targeted at popular and practical
SPEs such as Apache Storm. In this work we specifically
aim to address this gap, using the data flow characteristics
of streaming data and machine learning techniques to proac-
tively predict scaling of resources.

2. RELATED WORK
Auto-scaling of cloud resources is not a new topic in the

literature. Efforts have been made to achieve auto-scaling



and resource provisioning of cloud resources for both stream-
ing and non-streaming data [18, 11, 20].

Generally, auto-scaling techniques can be grouped into
two categories: reactive and proactive. Reactive auto-scal-
ing techniques collect metrics about the utilization of a mon-
itored system, then use these metrics to decide whether to
grow or shrink the required resources. Such reactive tech-
niques can lead to losing a large amount of data when a
sudden bottleneck occurs before the scaling decision can be
made.

The real-time nature of streaming data introduces new
challenges to the field of auto-scaling, including the need to
achieve low latency and guaranteed throughput [11]. There-
fore, reactive techniques may not be a suitable choice for
scalability decisions. Instead, proactive auto-scaling tech-
niques can be used predict future bottlenecks and make scal-
ability decisions in advance of the actual bottleneck.

The remainder of this section provides a literature re-
view on auto-scaling studies for SPEs, including popular
SPEs such as Apache Storm and its successor Heron, Apache
Spark and Apache Flink.

In practice there is only a limited body of work targeted
at automatically scaling existing popular SPEs. Most of
the techniques require human intervention to issue a scaling
command [11, 14, 8, 23]. In addition, most existing tech-
niques aimed at auto-scaling of SPEs are reactive, where a
monitoring system records and reacts to observed metrics
such as CPU utilization, memory consumption and network
latency. The monitoring system then makes the scalability
decision after the bottleneck actually occurs.

2.1 Conceptual Architecture of an SPE
Fig. 1 shows a high level architecture of a typical SPE de-

ployed in a cluster environment. The figure shows a cluster
of n nodes, each node executing an instance of the stream-
ing data pipeline. Typically, a pipeline consists of a directed
graph of processing units, also known as operators, that han-
dle the logic of the pipeline. An operator is a single unit of
processing that handles the logic of the data streaming sys-
tem.

There are two types of operators, stateful and stateless.
A stateful operator stores the current state of its processing
to be used in future processing, whereas a stateless opera-
tor does not store any state. For example, an operator that
calculates an aggregate function of the data such as the sum
or the average of a specific input is typically a stateless op-
erator.

Generally, streaming data passes from the data source, a
system that generates the data such as a Twitter feed, to
the SPE. The SPE has a predefined node that acts as a
coordinator (e.g., the Nimbus node in Apache storm). The
objective of the coordinator node is to assign work to a set
of worker nodes in the cluster. Each worker node receives
assignments from the coordinator node and creates instances
of operators needed for each job (nodes 1 to 4 in Fig. 1).
Finally, sinks are responsible for handling the output of the
pipeline. A sink is the termination point of the pipeline
where the output data is consumed such as writing to a
database or a file.

2.2 Comparison between Popular SPEs
Auto-scaling of SPEs requires a clear understanding of

the specifications of the popular SPEs in order to be able

Figure 1: SPE conceptual architecture

to consider which may be more suitable to for auto-scaling.
In this subsection we compare the three mainstream open
source SPEs, Apache Storm, Spark streaming, and Apache
Flink. Our comparison concentrates on the properties rel-
evant to auto-scaling research that can directly affect our
choice of SPE. Table 1 summarizes our comparison of the
three SPEs that we are considering.

2.2.1 Processing Technique
In streaming data research, there are two main techniques

for processing data, namely, instance-based and micro-batch.
In instance-based processing, each data tuple in the stream
is processed once it is received by the SPE individually.
Instance-based techniques usually have lower latency than
micro-batch techniques because each data tuple is processed
as soon as it arrives. On the other hand, Failure handling
in instance-based processing can be more complex, as we
discuss in subsection 2.2.2 below. Both Apache Storm and
Flink use instance-based processing to process their input
data stream.

In a micro-batch technique, the data stream is divided into
chunks of small batches that are processed at every specific
time duration. This time duration is usually a configurable
parameter. Spark streaming uses a micro-batch processing
technique. The advantage of the micro-batch technique is
its relative simplicity, since it can be built on top of tradi-
tional data processing engines. However, the disadvantage
of micro-batch techniques is the higher latency since the sys-
tem is required to wait for a specific time duration before
processing starts.

2.2.2 Dealing with Failures
In large scale systems that process massive amount of

data, failures will happen. All SPEs provide techniques
to handle such failures seamlessly. Generally, SPEs use
two techniques to replay failed data tuples when a certain
node fails, namely, acknowledgment (ACK) and checkpoints.
Apache Storm uses an ACK mechanism where the source of
the data keeps a backup of each tuple until it receives an
ACK from each operator in the path of the tuple up to the
data sink [26].

By contrast, Apache Flink uses a checkpoint mechanism.
Instead of acknowledging each individual tuple, Flink in-
jects a marker in the data stream to indicate that previous
tuples were processed successfully. The duration between
checkpoints can be configured by the user. In case of a fail-
ure, Flink replays all the tuples that occurred after the last



Table 1: Comparison between popular SPEs

Storm Spark Flink

Processing Instance-
based

Micro-batch Instance-
based

Failures ACKs Checkpoints Checkpoints
Guarantees At least once Exactly once All

checkpoint. Flink does not store the backup in its internal
state, rather it uses external storage.

2.2.3 Processing Guarantees
A typical SPE guarantees that all of the data is processed.

Three kinds of guarantee may be offered: at-most-once, at-
least-once and exactly-once. The guarantee level is closely
related to the failure mechanism used by the SPE. For ex-
ample, the ACK mechanism used by Storm can lead to du-
plicate processing of tuples. Consider a tuple that was pro-
cessed by all operators, however a node failure caused the
ACK not to be delivered to the data source. Hence, this
data tuple will be processed the second time. Therefore,
Storm guarantees at-least-once processing of data tuples.

Spark streaming uses a simpler mechanism to deal with
failures. Spark maintains the state of the batches that it
processes, therefore, a micro-batch is only replayed whenever
a failure happens. Hence, Spark only supports exactly-once
processing of tuples.

Finally, Flink can be configured to support any of the
three kinds of guarantee, based on the application require-
ments. Its default checkpoint mechanism allows for an ex-
actly-once guarantee, however, this can be downgraded to
at-least-once to reduce latency.

In our work, we aim at investigating an SPE that deals
with data in its natural streaming form in order to be able to
calculate data flow characteristics. Therefore, we will focus
our work on either Apache Storm or Flink. Apache Flink
uses more advanced features than the other SPEs for dealing
with failures to provide better data processing guarantees.
These features are needed in real life deployments. Thus,
for our auto-scaling research, we will begin with the simpler
approach of Apache Storm, and later extend our work to
Apache Flink.

2.3 Auto-scaling in Popular SPEs
Despite the large body of research in the field of auto-

scaling of resources, current popular SPEs lack the ability to
automatically grow and shrink to meet the needs of stream-
ing data applications.

2.3.1 Apache Storm and Heron
Apache Storm does not provide an auto-scaling feature

either on the level of individual topology operators or on
the level of nodes [6]. Rather, the administrator is required
to issue a special command ”storm rebalance” to change the
number of nodes or workers. Storm then deactivates all
the working nodes and reactivates them in the new arrange-
ment [24].

Several research papers use Apache Storm in their ex-
periments. Some of these papers use the famous Monitor,
Analyze, Plan and Execute (MAPE) cycle to make the scal-
ability decision. [23, 22].

Xu. et al. propose Stela [24], a technique to scale Apache

storm seamlessly. The goal of this technique is to maximize
the number of processed events and to minimize the duration
of interruption during the scaling operation. However, this
technique is invoked on-demand, where an external event
must trigger the scaling operation.

In recent work, Cooper [12] proposes a proactive frame-
work that uses a time series analysis to predict SLA breaches
for streaming data in cloud environments. Despite the large
body of research in the field of auto-scaling of resources for
steaming data, we believe that Cooper’s work and our work
are the first to propose proactive resource provisioning for
streaming data in popular SPEs such as Apache Storm and
Apache Flink.

Having been only recently released (mid 2015) [15], Apache
Heron has yet to receive attention in auto-scaling research.

2.3.2 Apache Flink
Although Apache Flink is reported to have significantly

higher throughput than Apache Storm [13], we were not
able to find any work that uses Apache Flink in auto-scaling
research. Some papers that use Apache Storm claim that
the proposed techniques can be easily extended to Apache
Flink or other streaming data frameworks.

By contrast with Apache Storm, Flink has a simpler data
structure called the Dataset to define the processing pipeline.
This API hides most of the complexities of Storm to de-
fine separate operators. However, this simplified API makes
it more complex for researchers to understand the under-
lying scalability mechanisms. Therefore, researchers prefer
Apache Storm as a platform of choice for performing their
experiments.

2.3.3 Apache Spark Streaming
Spark has auto-scaling features for its batch mode pro-

cessing, where it is able to scale up and down based on the
workload [21]. However, this feature is missing when deal-
ing with streaming data. Several research papers have ad-
dressed the scalability of Spark as a map-reduce framework,
however, auto-scaling for streaming data in Spark has yet to
receive any attention in the literature.

2.4 Auto-scaling in Other Frameworks
In addition to these popular SPEs, auto-scaling for other

SPEs in the cloud have been proposed in the literature.
Esper [4] is a popular choice in several research papers.
Zacheilas et al. propose a mechanism to predict the latency
and the load of Esper engine [25]. In contrast to popular
SPEs that are distributed in nature, Esper runs on a single
node and it has to be combined with the popular SPEs to
achieve the high availability. Our work focuses on resource
provisioning of the popular distributed SPEs such as Apache
Storm and Apache Flink.

Stormy [17] is a scalable streaming service for the cloud.
To achieve scalability and elasticity, Stormy has a mecha-
nism to distribute queries from the overloaded nodes. How-
ever, authors do not specify the criteria for selecting the
overloaded nodes.

StreamMine3g [19] promises flexible topologies that can
change at runtime in addition to the application of linear
horizontal scaling when nodes are overloaded. Experiments
in this work use a threshold of 80% CPU utilization to make
reactive scalability decisions.

Abrantes et al. [8] present a different approach for auto-



Figure 2: Streaming data flow characteristics

scaling, using the actual content of a Twitter feed to pre-
dict future workload. The authors use sentiment analysis of
soccer-related tweets to detect rapid changes in the crowd’s
behavior and to predict bursts of messages before they ac-
tually occur. They find that in several cases, their algo-
rithm can help prevent SLA violations compared to other
threshold-based methods.

Major vendors such as IBM, Amazon and Google have
their own streaming data solutions, however, they require
manual intervention to adjust the required resources based
on the workload. Microsoft [16] proposes a new SPE, Stream-
Scope, a distributed SPE running on a cluster of 20,000
servers. However, the framework is not open source and
the paper does not describe any auto-scaling strategy.

3. OUR APPROACH: SMART PROACTIVE
AUTO-SCALING

In this section we propose a three-stage framework to pro-
vide proactive auto-scaling of cloud resources for streaming
data. The novelty of our proposal lies in:

1. The use of the data flow characteristics of streaming
data to construct machine learning models of varying
workloads.

2. The definition of performance models for different clas-
ses of workloads and resources.

3. Application of a decision model to first, decide whether
to grow or shrink the resources and second, to decide
the amount of needed resources to scale.

3.1 Key Challenges
In this section we describe the two fundamental challenges

that we address in our work.

Characterizing Streaming Data
Streaming data has a fundamentally different nature than
static data. Querying static data has been well-established,
and effective query optimization techniques exist for such
systems. On the other hand, querying dynamic and un-
bounded streaming data requires different mechanisms. The
main difference is that static data residing on a storage
medium can be measured in terms of size and latency of
retrieval, whereas such measurements are not applicable to
dynamic streaming data.

Figure 3: Proposed framework

Streaming data cannot be measured using traditional tech-
niques. Fig. 2 shows the high level conceptual relation be-
tween time and the number of streaming data tuples. For
simplicity, the figure shows a data stream with a linear in-
crease in its velocity over time. The data stream is divided
into windows for processing purposes. For each window, the
speed, acceleration and density of the stream can be calcu-
lated. In the figure, the acceleration is a non-zero value since
the speed is increasing linearly. The density however has an
arbitrary value to demonstrate the idea. The density can be
calculated as the average size of the tuple in the window w.

Machine Learning Techniques
Since streaming data flow characteristics are themselves stre-
aming data, traditional machine learning techniques can not
be applied. A great deal of research has been done in the
field of machine learning for streaming data by Bifet et al. in
several research papers [10], including the distributed scal-
able machine learning framework Apache SAMOA [2] (Scal-
able Advanced Massive Online Analysis).

In our work, we plan to explore the regression techniques
proposed in literature for streaming data and the available
techniques in current frameworks such as Apache SAMOA
and Spark MLlib.

We will explore the applicability of workload classification
techniques using streaming machine learning techniques. The
purpose of workload classification is to classify workload
characteristics into groups such as low, medium or high load.
If we can train a classifier based on observed data flow char-
acteristics to predict the onset of a change in load, we may
be able to proactively reallocate the required resources.

3.2 Proposed Framework
Fig. 3 shows the high level architecture of our three-stage

framework for proactive auto-scaling of cloud resources for
SPEs. The framework has three main components: (1) the
Workload model, (2) the Performance model, and (3) the
Decision model.

Workload Model
A monitoring component will be used to record data flow
characteristics. Simple characteristics can be used, such as:

1. Speed: The average arrival rate of tuples to the SPE.



2. Acceleration: The average rate of increase/decrease of
speed.

3. Density: The average size of a tuple.

More complex characteristics can also be investigated, such
as:

1. Variability of the speed: A property to measure how
frequently the speed changes. This can be calculated
using the standard deviation of the speed for a spec-
ified number of windows. For example, a higher vari-
ability means that the cloud resources should be scaled
to withstand a higher load until the load stabilizes to
prevent rapid fluctuations in system performance.

2. Operator throughput: A property to measure the ratio
of the number of tuples leaving to the number of tuples
arriving at the operator in a specific time window. An
ideal operator that performs modifications to the in-
put without performing any aggregation should have
a throughput of one. Lower throughput might indi-
cate a bottleneck in the operator, which would require
expanding the resources assigned to it.

3. Average processing time: The average time required
by an operator to process a tuple. Higher processing
time than the average indicates a bottleneck in the
operator, which would require more resources.

Workload characteristics collected during system’s operation
will be the independent variables in our prediction model.
We will explore whether a single model is enough, or whether
an ensemble of models should be created to predict future
workloads

In order to construct the machine learning model, we will
explore the streaming data regression algorithm provided
in SAMOA and the Adaptive Model Rules Regressor algo-
rithm (AMRules for short) originally proposed by Almeida
et al. [9].

Performance Model
The purpose of the performance model is to use traditional
performance measures such as CPU utilization, memory con-
sumption and network latency to predict the future bottle-
necks for a specific workload model. We will explore how to
minimize a specific metric such as the processing latency or
number of SLA breaches.

Performance models have been studied extensively in lit-
erature for static data, for example in the work done by
Mian et al. [20]. We will explore the applicability of these
models to our streaming data.

Decision Model
The final step in the framework will use both the perfor-
mance and workload models to make scalability decisions
such as whether to grow or shrink the allocated resources,
which resources and by what amount .

To begin with, the decision model will be a simple rule-
based model. In later phases of our work, we will explore
using a more sophisticated prediction model in this stage
rather than a simple rule-based model.

3.3 Datasets
In order to evaluate our framework, we plan to use datasets

that naturally provide typical fluctuations in the speed and

volume of the data stream for extended periods of time. We
have explored the existing benchmarks and datasets used in
the literature and unfortunately, very little work has been
done to standardize these datasets. Furthermore, some re-
search papers have used synthesized datasets [23, 22], which
may not be suitable for research on auto-scaling of stream-
ing data, because they may not reflect the real nature of
streaming data and thus will impose several threats on the
validity of our results.

We evaluated several benchmarks and datasets proposed
in the literature to decide which are suitable for the needs
of our research. We found one benchmark for Apache Storm
which is provided by Yahoo [7]. The stream in this bench-
mark is composed of 1000 tuples for 10 seconds. We excluded
this benchmark since the workload does not naturally vary
with time and hence does not meet our needs.

We are considering a few other candidate stream datasets
for our work as the following:

1. Frankfurt Stock Exchange: This dataset is used by
Heinze et al. [14]. Naturally stock exchange data are
affected by external factors such as political events or
natural disasters. Therefore, we are considering to use
it in our research.

2. Smart City Sensor Networks: This dataset will be used
by Cooper [12]. This dataset is of varying characteris-
tics that will be suitable for our research.

3. Twitter data: In a recent paper, Abrantes et al. [8] use
tweets for a crowd of a football tournament to predict
SLA breaches. This data is also of varying nature,
hence we will investigate to use it in our research.

Similar to the state-of-the-art research in the field of re-
source provisioning for SPEs, we will measure the effective-
ness of our proposed framework by recording metrics such
as processing latency and percentage of failed tuples. These
metrics will then be compared against the results of other
techniques such as the traditional threshold approach.

4. OPEN ISSUES
This paper proposes a high level conceptual framework

for auto-scaling of streaming data in SPEs. We are aware of
a number of challenges that we will be investigating in our
work.

First, a distinction has to be made between stateful and
stateless operators. In a local cluster, the latency of copying
an operator state is negligible because of high speed local
connections between individual nodes. In a cloud environ-
ment however, where larger distances and higher latencies
between nodes exist, moving state is challenging. Initially
we will investigate stateless operators, and then attempt to
extend our work to stateful operators.

Second, earlier studies often neglect the time delay needed
to create new resources such as virtual machines. We will
begin with the same assumption for our initial studies, and
then we will add an extra time penalty factor to our perfor-
mance model to consider this delay.

5. CONCLUSIONS
In this work, we aim at investigating the data flow char-

acteristics of streaming data workloads, and the problem of



how to automate the scaling of resources in the presence of
these uncertainties. Creating performance and utilization
models using these characteristics (i.e. meta-information)
can be useful in predicting future bottlenecks in cloud envi-
ronments, and hence in enabling more reliable and accurate
auto-scaling mechanisms for stream processing applications.

Our work will focus on machine learning based on stream-
ing data, and in particular meta-information such as the
speed, acceleration and density of stream data sources. We
plan to leverage the use of existing streaming data regression
models to act on the meta-information of streaming data, in
order to predict the most efficient way to shrink or grow
the required resources in the presence of a rapidly varying
streaming data workload.
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