
SimEvo: A Toolset for Simulink Test
Evolution & Maintenance

Eric J. Rapos
Department of Computer Science & Software Engineering

Miami University, Oxford, OH, USA
Email: rapose@miamioh.edu

James R. Cordy
School of Computing

Queen’s University, Kingston, ON, Canada
Email: cordy@cs.queensu.ca

Abstract—As Simulink models evolve and change during devel-
opment, test evolution and maintenance can often be overlooked.
SimEvo provides a toolset to assist Simulink developers in co-
evolving test harnesses and test cases alongside their source
models. Primarily a collection of testing tools, SimEvo combines
the impact analysis features of the SimPact impact analysis tool
to identify instances of necessary test case changes and potentially
affected blocks, with the SimTH test harness generator to
automatically determine if changes need to be made to the
test harness model, and automatically generate a new one if
necessary. This paper examines the implementation of SimTH,
its integration with SimPact into the workbench SimEvo, and an
overall analysis of the contributions of the toolset.

I. INTRODUCTION

Testing can be an expensive process which takes consid-
erable resources for a software project [2]. Testing includes
requirements reviews, test case design, test creation, and test
execution. In the automotive domain Simulink modelling has
been increasingly gaining traction in recent years. Given the
rapid evolution and high quality standards of these systems,
consistent test maintenance has become a growing concern.
Thus tools to assist in the automation of software test evolution
are critical for the future.

In this work we attempt to address that issue with a
toolset for Simulink test evolution which includes SimPact, an
existing tool for impact analysis [11], as well as SimTH, a new
tool specifically designed to automatically generate and update
Simulink test harnesses. From these components the SimEvo
toolset was created, which combines SimPact, SimTH, and
smooth interaction with existing development and test tools in
use by our industry partners.

By automating the usually manual process of test harness
maintenance, savings in time and effort can be observed
throughout the testing process. Previously our industry part-
ners’ engineers developed and maintained test harness models
using a set of template files and informal conventions that
allowed manual creation and updating of tests when changes
were made to the source model.

The testing community, as well as our industry partners,
see automation of the test harness generation and evolutionary
update process as a desirable goal for a number of reasons.
From the testing community perspective, automation allows
for effort to be spent in other areas of the software process,
freeing up valuable resources. From the industry standpoint,

the in-house testing tool used by our collaborators has re-
cently been named the recipient of a company wide testing
tool sweepstakes, garnering it additional attention by many
other groups. Along with this additional attention comes an
increased demand for support and functionality. Reducing the
test harness maintenance effort would allow them to spend
more time on other tasks.

Thus we are motivated by both the strong industrial demand
for an automated test harness generator in our industry part-
ners’ environment, and by the the opportunity to explore test
evolution automation in general in the automotive context.

In this research we make the following contributions:
• A test harness generator for Simulink models.
• Industrial validation of our test harness generator.
• The incorporation of new and existing tools into a test

evolution and maintenance toolset.

II. BACKGROUND AND RELATED WORK

A. Testing Simulink Automotive Models

In order to understand the contributions of SimEvo it
is important to understand the testing process used by our
industrial partners to test their automotive models, and how
the test models are conventionally created and the tests run.
While this particular process is specific to their environment,
it is also typical of Simulink model testing in general.

In the context of our industrial partners, testing of a
Simulink model involves execution of the model on a series of
timed inputs over a set interval. Timed outputs are compared
against oracle values for the expected outputs. Thus, to test
a model two artifacts are needed: (i) a test harness capable
accepting input values and monitoring output values, and (ii)
a set of timed test inputs and expected outputs over a time
interval. (This represents one test case. There many be many
for the same model.) Specification of the test case values
themselves is currently a manual process, and the automation
of their maintenance is part of our future work. An example
test harness model, like one that would be used by our partners,
can be found in Figure 1.

Test cases are specified as spreadsheets in Excel workbooks
created manually by domain experts responsible for creating
functional tests for the models. Each spreadsheet in a work-
book represents exactly one test case, while the workbook as
a whole represents the entire test suite. In each tab, there are



Fig. 1. Sample Test Model, with Environment and Operating System
Simulation Blocks

column headers specifying the input signal names, simulation
trigger names, output names, with the leftmost column always
indicating the time in seconds. Each row represents a single
time step and the values at that given time.

With all of the artifacts prepared (test harness model and test
suite workbook), the testing tool used by our industry partners
is able to run a simulation of the model. The simulation is run
once for each test case in the test suite, using the specified
time steps and input values, and monitors the outputs to make
comparisons against the expected outputs. For each test case
the tool produces a results report which contains details about
the performance of the tool in the tests, normally as differences
between expected and actual outputs.

B. Test Harness Generation

Simulink [4] models are behavioural models based on the
flow of inputs through a series of blocks. The blocks perform
calculations based on, and make changes to, the input signals
provided to the model from external sources.

A test harness is designed to adapt a piece of software
such that it can be executed with test values and the results
observed for comparison. A test harness supports automatic
execution [1]. The next section will detail how this process
occurs as a part of our industry partner’s software process,
and relates it to other approaches to the creation and automatic
generation of test harnesses, highlighting how SimTH differs.

Rocha and Martins introduce a model-based method for test
harness generation for component testing [12]. Their approach
generates a test harness which executes source code rather than
a source model. The harness itself is model-based, using UML
activity diagrams. It converts the activity diagrams (through a
number of intermediate representations) to a test harness as
source code in the programming language of the system under
test. SimTH differs from this in that it produces a test harness
in the native modeling language of the source model.

Okika et. al. present work on the creation of test harnesses
for legacy software, using the example of an embedded
system [7], which is similar to the goal of SimTH. Their

work focuses on the creation of a test harness that will work
for the control software for any provided test. This differs
from SimTH, which generates a custom test harness for each
Simulink model, created automatically given a model as input.

A specific subsection of test case generation work that
is worth investigation is the domain specificity of test case
generation for Simulink models, which is a fairly recent line of
research. For example, Peranandam et. al. present an integrated
test generation tool for enhanced coverage of Simulink and
Stateflow models [8]. Their work is specific to the application
domain, but deals with test case generation as opposed to
the generation of harnesses to facilitate testing. The focus of
their generated tests is on coverage, while the tests used in
our experiments are functional tests based on requirements.
Mohalik et. al. present similar work, using model checking to
automatically generate test cases for Simulink/Stateflow [6].
These approaches can be thought of as complementary to
SimTH, aiming at test case generation rather than automatic
generation of test harnesses to execute the tests.

SimTH falls in the intersection of these two areas of related
work, addressing specifically the absence of tools designed for
model-based test harness generation. While these examples of
related work involve model-based test case generation and test
harness generation for source code, SimTH aims at model-
based test harness generation for Simulink models.

C. Test Co-Evolution

The idea of ensuring tests evolve correctly and consistently
alongside their source (whether that be code or models) is
known as test co-evolution. Co-evolution is one of the primary
goals of SimEvo, to ensure that tests can evolve in response
to changes to the model as easily as possible by providing the
tool support to do so.

Zaidman et al. [13] present a very comprehensive look at
co-evolving tests and production software, from a number of
different perspectives. They look at this topic from three views:
(i) change history, (ii) growth history, and (iii) test evolution
coverage. These views were validated using two open source
cases (Checkstyle and ArgoUML) and one industrial case (a
project by the Software Improvement Group).

One interesting approach to the concept of test evolution,
specifically test case repair, is presented by Daniel et al. [3].
The authors use symbolic execution to repair existing test
cases. The authors previously created ReAssert, which was
capable of automatically repairing broken unit tests, however
they must lack complex control flow and operations on ex-
pected values. In this paper they propose symbolic test repair,
a technique which can overcome some of these limitations
through the use of symbolic execution.

The work of Pinto et. al. [9] is aimed at understanding the
myths and realities of test-suite evolution. In particular, they
investigate why tests change over time. The authors state that
test repair (fixing tests that no longer work after a change) is
only one of many ways tests can evolve. In fact most changes
occur as refactorings or additions and deletions of test cases.
One example of the automation of test evolution is the work



Fig. 2. SimEvo Architecture

of Mirzaaghaei et. al., in which they are able to automatically
repair test cases for evolving method declarations [5].

III. SIMEVO ARCHITECTURE

SimEvo serves as a container for other tools and func-
tionality, and as such is best presented by looking at each
of its components individually. SimEvo consists of three
main contributions: SimTH (test harness generation), SimPact
(impact analysis), and its ability to interact with other industry
testing tools. Figure 2 provides an overview of the architecture
of the SimEvo tool.

A. SimTH

To produce a working test harness for an automotive model,
SimTH requires as input only the Simulink behavioural model
developed by the industrial engineer. Since the Simulink model
to be tested is the only input required, SimTH does not place
any new requirements on the developers – an important feature
when introducing tools into an existing industrial toolchain.

This section describes the internal logic of SimTH, walking
through the steps it uses to create test harness models. There
are four main tasks in test harness creation: inclusion of the
system under test, input and output management, environment
simulation, and standardization. We discuss these four steps
in general, and then their specific implementation in SimTH.

After these four steps are done, a final test harness is pro-
duced meeting all of the requirements of our industry partner.
Each of the four steps maps directly to some component (or
set of components) of the completed test harness. Figure 3
overlays the steps on the sample test harness model.

1) Step 1: Inclusion of the System Under Test: In order to
test a specific system, a test harness needs an awareness of
the system under test (SUT). Thus, the first step in creating
a functional test harness is the incorporation of the model’s
functions into the test harness model by including the SUT
components in the test harness.

To implement this in SimTH, we use the Simulink function-
ality for library linking. This feature allows a model to import
the contents of another model, subsystem or block as a library
link. Simulink testing is normally done at the subsystem level,
and thus the SUT is normally a Simulink subsystem block.

SimTH investigates which library model is linked to the
SUT subsystem and creates a link to the same library in the
newly created test model. As a result the only element in the
test harness is the linked library block. From the linked block,

Fig. 3. Implementation Steps for Test Harness Generation, Resulting in the
Complete Generated Test Harness

SimTH is able to identify the key parameters of the model,
and copy any necessary values into memory for later use, such
as simulation time step and solver options.

2) Step 2: Input and Output Management: The next major
step is the management of the inputs and outputs to the SUT.
As inputs and outputs play a central role in the testing of a
system, it is important that the generated harness appropriately
handle the inputs from test case files in order to provide
them to the corresponding inports in the model. It is equally
important that the test harness be able to monitor for correct
output values and further comparison.

To implement input and output management, SimTH ex-
amines the interface of the subsystem block(s) being tested.
Each block’s interior has a number of inports and outports
(Simulink terminology for inputs and outputs) which translate
to labels on the model block itself. Traditionally inputs are on
the left edge and outputs on the right, but this is not required.

SimTH begins by iterating over each input one at a time to
integrate it into the test harness. Each inport has a designated
signal name and type; SimTH relies on the signal names
conforming to the conventions set by our industry partner
to obtain the relevant information. SimTH pulls the relevant
information from the SUT library block and creates a special
block designed to read values from the workspace, which
simulates receiving values from an external input source. This
block is known as a FromWorkspace block and is param-
eterized by identifying that it will read a particular input
value (using its name) and the timestep value. This process
is repeated for all of the inputs to the subsystem being tested.

Some inputs may require additional processing before they
can be provided to the model. These include conversions from
floating point to fixed point values, as well as conversions for
enumerated types. In such cases SimTH is able to infer the
required conversions based on types and naming conventions,
and generates the necessary conversion blocks between the
FromWorkspace block and the subsystem being tested.

The outputs of the behavioural model are used to provide



inputs to other blocks outside the scope of the subsystem
being tested. For testing purposes, output values are used for
comparison to expected values, which is done by the testing
tool observing the test simulation. To manage this SimTH links
each output of the subsystem being tested to a special block
known as a terminator, which ends the signal at that point.
Examples of sending signals to a terminator block are shown
on the right hand side of Figure 1.

3) Step 3: Environment Simulation: One of the main con-
tributions of a test harness is the ability to simulate the
environment in which the model will eventually be run without
actually having access to that environment. This is done by
simulating standard calls from the environment and providing
accurate responses to calls to the simulated environment.
Ensuring an accurate simulation of the environment by the
test harness is of extreme importance in testing the SUT. There
are two parts to this implementation in SimTH: the simulation
of vehicle operating system (OS) calls, and the inclusion of
various other required environment variables and blocks.

The majority of the logic of SimTH is responsible for
creating an OS simulation subsystem capable of simulating the
necessary parts of the OS for the vehicle. A given subsystem
in a vehicle needs to interact with the operating system in
various ways during execution, such as receiving signals from
predefined flags. Since in the test harness the subsystem is
tested in isolation, it needs some representation of the OS
capable of simulating all of the required functionality.

The OS simulation is used mainly to simulate triggered
events in the OS, which are invoked based on inputs from the
test case file. When the flag to trigger an event is set in the
test input file, the OS simulation block behaves in a manner
consistent with the OS, which allows the rest of the system to
react as it would under normal operating conditions. This is
imperative in obtaining realistic test results.

An example Operating System simulation block can be seen
in the sample test model in Figure 1, below the subsystem
being tested. It has a number of simulated inputs similar to
the main SUT, but these are to simulate interactions with the
OS rather than outside inputs.

The number of different OS calls that can be made from
models for the particular portion of automotive software devel-
oped by our partners is relatively limited. This means that the
functionality for each type of call can be implemented directly
in SimTH, such that when a specific type of call is required,
SimTH can automatically generate the required blocks in the
OS simulation subsystem to handle them. There are three
main categories of OS simulations that SimTH must create
in the OS simulation subsystem: periodic events (occurring
every clock cycle), triggered events (caused by OS events),
and initialization events (occurring on startup and after any
reinitializations). This step in developing SimTH posed several
difficulties when run on systems representing corner cases
where the typical clock cycles did not apply, or multiple
overlapping clocks were necessary. These were addressed by
implementing special OS simulations targeted at these cases.

An internal view of a sample generated OS simulation

Fig. 4. Sample Operating System Simulation Block (internal view)

subsystem can be seen in Figure 4. This OS simulation block
has 3 triggered events in addition to the initialization and
periodic events, all for a 12.5ms time step.

In addition to OS simulation, SimTH is also responsible for
the inclusion of a number of additional blocks and settings
to create the execution environment for the model. There are
three types of blocks that are added (2 mandatory, 1 optional)
to the top level of the test harness, along with the setting of
several parameters. Once these are included we have a fully
functional test harness model.

The last part of setting up the environment is setting the
model parameters for the test harness based on the values
obtained from the SUT’s linked library. This includes setting
the step time and solver options for the model, such that they
are consistent and will not be the source of any discrepancies
between actual and expected results. These parameters are set
automatically by SimTH based on available information.

4) Step 4: Standardization: The final step in test harness
generation focuses on producing a result (in this case the
test harness model itself) that conforms to existing standards
for testing within the organization. This is to ensure that
beyond the functionality covered by the previous sections,
the generated test harness is recognizable and familiar to
developers.

The main concern is that SimTH-generated test harness
models should be visually similar to those developed manually
from the template files currently used by our industry partners.
This means that the layout needs to be familiar and easy to
understand, blocks need to be the same colours and sizes
as expected, and labeling and naming conventions must be
consistent with current practice. These issues are important
from a human interaction standpoint, and while they do not
impact functionality, they assist in the smooth and continued
maintenance of the software, one of the key goals of SimTH.
To address this issue, SimTH is capable of producing test
harness models that are visually identical to those manually
generated, aside from an additional label at the top level that
indicates that it is a generated test model. Since even the
manually created files are based on templates, it is rather
straightforward to implement SimTH to reproduce the same
layout and coloring choices.

B. Including SimPact

The second main component of SimEvo is the integration
of an existing tool used for maintaining evolving Simulink



models: SimPact [11]. Since SimEvo’s main goal is the support
of test maintenance for evolving Simulink models, one of the
biggest issues is the impact of changes made to models on test
cases and test harnesses. Including a tool aimed at identifying
and mitigating the impact of these changes helps guide the use
of SimTH and builds a stronger, more comprehensive toolset
for our industrial partners.

C. Integration with Existing Test Tools

A major goal of SimEvo is the ability to interact with
existing testing tools already developed and used by our
industry partner. The use case for this interaction is based
on some of the described future work of our previous impact
analysis work [11]. When provided with a list of potentially
impacted inputs and outputs following changes to a model,
developers are left with two options: manual inspection or
generation of suggestions. SimEvo’s interaction with existing
tools handles the second option.

The in-house testing platform previously developed by our
industry partners takes a test harness and test input values
to simulate and generate expected outputs for the provided
inputs. When SimPact identifies the potential need for updates
to tests affected by changes to the model, this simulation can
provide the developer with candidates for possible updated test
values. By making method calls to the test harness (existing
or generated using SimTH) along with the existing input test
values, the testing tool simulates the test model with these
values, observing and recording the new outputs. This entire
sequence of events is hosted in SimEvo, providing a single
consistent platform for test maintenance as the models evolve.

IV. VALIDATION OF SIMTH

A tool such as SimTH is used to assist and improve the
software process by automating tasks that were previously
done manually – as such, it is difficult to measure improvement
in terms of performance when the methods are so dissimilar.
One metric of success for SimTH is the ability to produce
test models that are functionally equivalent to those developed
by hand. While there is no benchmark to measure against,
we determined it would be interesting to measure the time
required for automatic generation of test harness models using
SimTH, as a potential benchmark for future work.

To validate SimTH, we perform two experiments: (i) A
timed execution of SimTH test harness generation, which
provides execution time results, as well as whether or not
a test harness could be produced at all for a chosen model
set, and (ii) A correctness validation, in which the test models
generated by SimTH are run with the testing tool to determine
if they produce the same results as those generated manually.

A. Experimental Design

Here we present the two validation experiments in detail.
1) Harness Generation Ability and Efficiency: To test

SimTH’s ability to generate test harnesses for the complete
set of our industrial partners’ models, we automated calls to
SimTH over the entire model set in succession, documenting

the success or failure of SimTH to create an output model.
The results were then summarized and presented to include the
number of successful and unsuccessful generations. In addition
to the ability to generate the test harnesses, we recorded
the generation time for each. This is done primarily as a
baseline for future improvements, as any automated process
will certainly be faster than the current manual process.

2) Harness Correctness in Test Execution: The focus of this
experiment is to test whether the automatically generated test
harnesses from SimTH produce the same results as the original
manually produced test models when run with the same test
suites. If the results are the same, we consider that the test
harness generated by SimTH is functionally equivalent. This
experiment was run on the current final release of all of the
models in our partners’ model set. Although we have access
to several generations of previous versions of the models, we
chose this subset because it contains an instance of every
model currently still in use, and because it covers all of the
types of models in the set.

The result of this experiment is a pass/fail rating for the
each automatically generated test harness from SimTH. If the
testing tool determined that all of the test cases in the test suite
passed, then SimTH received a pass. If any test case failed,
SimTH received a fail for that test harness generation.

B. Model Test Set

The models used for this experiment are the same models
used in our co-evolution experiment [10], representing several
releases of the production models for an entire automotive
subsystem. This entire model set, consisting of 457 models
in total, is used for validation of test harness generation and
performance measures, while subset of models and tests for
the current final release, consisting of 45 models, was used to
validate the correctness of the generated test harnesses.

C. Results

For the first experiment, testing the ability to generate a
test harness for each of the 457 unique model files, SimTH
was able to successfully generate a test harness for 423 of the
457 models, or 92.6%. This result is very positive overall.
Several reasons were identified for the cases where a test
harness was unable to be generated, including multiple time
rates and complexity of integration models. Discussions with
our industrial partners revealed that these types of harnesses
would require special attention, and their current absence
from SimTH functionality is not a major issue. In terms
of performance, the average execution time for SimTH to
generate a test harness was 2.3 seconds, with a maximum of
less than 7 seconds.

The second experiment designed to measure the ability to
produce the same testing results as the manually produced
test harnesses. This experiement was conducted on the 45
test suites corresponding to the 45 test harnesses SimTH was
able to generate for the models in the current final release. Of
these 45 models, 39 successfully behaved the same (based on
testing tool behaviour) as the manually produced test harnesses



provided by our industrial partner, a success rate of 86.7%.
These results are not as strong as we would have liked, but are
still very promising. SimTH automates a previously manual
process, and produces correct test models a high percentage
of the time.

We investigated thos instances where SimTH’s generated
harness did not perform identically to the manual test har-
nesses, and it appears that the reason for the inconsistency is
easily spotted by manual inspection of the top level blocks
of the harness (there are potentially extra conversion blocks,
missing enumerated type references, etc.). Our industry partner
assures us that it is common practice to review test harnesses
prior to use, and a notice has been added to SimTH to remind
engineers to perform this check on generated harnesses.

Overall, the 92.6% rate of generating test harnesses for the
entire set of models, and the 86.7% correctness rate provide
us with promising first results for improvements in the testing
process using automation.

D. Additional Validation

Following our validation experiments, our industry partners
have conducted experiments using SimTH on a much larger
set of models, which for confidentiality reasons we are unable
to present. However, these internal tests have been beneficial
in providing a further measure of the success of SimTH.
While we cannot discuss specifics, our industry partners have
indicated that SimTH is working for most of the much larger
set of models they have run it on.

V. CONCLUSIONS

We have presented SimEvo, a toolset for Simulink test
evolution and maintenance. SimEvo is a combination of the
existing tool SimPact [11], our new tool SimTH, and a set of
interactions with other test tools used by our industry partners.

The primary focus of this paper, beyond the compilation
of existing tools into a useful toolset, is the creation and
validation of SimTH as an effective test harness generation
tool for Simulink models in industry. SimTH is capable of
taking a source model as input and determining exactly which
elements are required for a test harness to test that model, and
automatically generating that harness. SimTH was validated
on an industrial set of models and was capable of generating
test harnesses for 92.6% of the entire set of models, with an
86.7% correctness rate. While a higher rate is desirable, we
have identified the cause of most of the issues, which were
largely due to changes in naming conventions for timing of
events. A standardization has since been introduced to avoid
this problem, and in-house validation by our partners has
observed a significantly higher success rate.

In the future, we would like to expand on the types of
tools included in SimEvo. Currently containing SimPact and
SimTH, there is certainly room to expand functionality to
include test value generation, and other tools to support
evolving test cases. Additionally, we would like to perform

additional validation experiments on newer models from our
partners in order to verify the success of SimTH on updated
models conforming to stricter modeling conventions, which
will assist in our automation.

ACKNOWLEDGMENTS

The authors would like to thank our industry partners for
their continued support in providing valuable feedback, testing
our tool in their environment, and assisting in adapting SimTH
to work on a larger scale. Specifically we would like to thank
Costantino Rotella and Daniel Nowocien for their time and
assistance. This work is supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC), as part of
the NECSIS Automotive Research Partnership with General
Motors, IBM Canada and Malina Software Corp., and by the
Ontario Ministry of Research, Innovation and Science through
an Ontario Research Excellence grant.

REFERENCES

[1] B. Beckert, R. Hähnle, and P.H. Schmitt. Verification of object-oriented
software: The KeY approach. Springer-Verlag, 2007.

[2] A. Bertolino. Software testing research: Achievements, challenges,
dreams. In Proceedings of the 2007 Future of Software Engineering,
FOSE ’07, pages 85–103, Washington, DC, USA, 2007. IEEE Computer
Society.

[3] B. Daniel, T. Gvero, and D. Marinov. On test repair using symbolic
execution. In Proceedings of the 19th International Symposium on
Software Testing and Analysis, ISSTA ’10, page 207218, New York,
NY, USA, 2010. ACM.

[4] Mathworks. MathWorks Simulink Product Page. http://www.mathworks.
com/products/simulink/. Accessed: 2015-10-27.

[5] M. Mirzaaghaei, F. Pastore, and M. Pezze. Automatically repairing test
cases for evolving method declarations. In Proceedings of the 2010
IEEE International Conference on Software Maintenance (ICSM 2010),
pages 1–5. IEEE, 2010.

[6] S. Mohalik, A.A. Gadkari, A. Yeolekar, K.C. Shashidhar, and S. Ramesh.
Automatic test case generation from Simulink/Stateflow models us-
ing model checking. Software Testing, Verification and Reliability,
24(2):155–180, 2014.

[7] J.C. Okika, A.P. Ravn, Z. Liu, and L. Siddalingaiah. Developing a
ttcn-3 test harness for legacy software. In Proceedings of the 2006
International Workshop on Automation of Software Test, AST ’06, pages
104–110, New York, NY, USA, 2006. ACM.

[8] P. Peranandam, S. Raviram, M. Satpathy, A. Yeolekar, A. Gadkari, and
S. Ramesh. An integrated test generation tool for enhanced coverage
of Simulink/Stateflow models. In Proceedings of the 2012 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages
308–311. IEEE, 2012.

[9] L.S. Pinto, S. Sinha, and A. Orso. Understanding myths and realities
of test-suite evolution. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
page 33. ACM, 2012.

[10] E.J. Rapos and J.R. Cordy. Examining the co-evolution relationship
between Simulink models and their test cases. In Proceedings of the
8th International Workshop on Modeling in Software Engineering, MiSE
’16, pages 34–40, New York, NY, USA, 2016. ACM.

[11] E.J. Rapos and J.R. Cordy. SimPact: Impact analysis for simulink
models. In Proceedings of the 33rd International Conference on
Software Maintenance and Evolution, ICSME ’17. IEEE Press, 2017.

[12] C.R. Rocha and E. Martins. A method for model based test harness
generation for component testing. Journal of the Brazilian Computer
Society, 14(1):7–23, 2008.

[13] A. Zaidman, B. Van Rompaey, A. van Deursen, and S. Demeyer.
Studying the co-evolution of production and test code in open source and
industrial developer test processes through repository mining. Empirical
Software Engineering, 16(3):325–364, 2011.


