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Abstract

Latent Dirichlet Allocation (LDA) is a data clustering algorithm that performs especially
well for text documents. In natural-language applications it automatically finds groups of related
words (called “latent topics”) and clusters the documents into sets that are about the same “topic”.
LDA has also been applied to source code, where the documents are natural source code units
such as methods or classes, and the words are the keywords, operators, and programmer-defined
names in the code. The problem of determining a topic count that most appropriately describes
a set of source code documents is an open problem. We address this empirically by constructing
clusterings with different numbers of topics for a large number of software systems, and then use
a pair of measures based on source code locality and topic model similarity to assess how well the
topic structure identifies related source code units. Results suggest that the topic count required
can be closely approximated using the number of software code fragments in the system. We
extend these results to recommend appropriate topic counts for arbitrary software systems based
on an analysis of a set of open source systems.
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1. Introduction

Latent topic models can assist in understanding software systems by considering the set of
words used in the source code fragments and identifying relationships between the fragments
based on vocabulary. The vocabulary used in a software system’s code is large and repetitive,
making it difficult to associate code fragments by simple word search alone. Thus it is helpful
to look for latent factors that capture deeper structure. These latent factors are unobserved, but
through correlation between observable attributes (such as the variety and frequency of words
used in a fragment), capture deeper structure in the system being studied [1]. For example, in the
social sciences, latent factors can represent abstract concepts such as intelligence, social class,
power, and expectations. In economics, latent factors correspond to concepts such as quality of
life, morale, and happiness [2].

In natural language, the observations taken typically relate to word frequency. Instead of
measuring attributes of a country, such as the GDP or average lifespan, we measure attributes
about the document, such as word frequency. These word counts are provided as input to a
statistical structure called a topic model, in which a “topic” describes some relationship between
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parts of the data. Recently factor analysis using topic models has also been applied to software
systems, using topic models to analyze units of source code such as methods or classes as text
documents [3].

A critical question in understanding the latent topics uncovered by factor analysis of text
documents is how many topics should be sought. If too few are used, largely independent factors
are forced together and separate concepts may be clustered as one. If too many are used, strongly
related documents will be artificially partitioned, and single concepts may be split across topics,
making them difficult to see. Rules for choosing an appropriate topic count to represent a corpus
of natural language documents have been empirically determined [4, 5]. However, it is not at
all clear that these same rules are appropriate for source code, and the problem of determining a
topic count that most appropriately describes a set of source code documents is an open problem.

This problem is the subject of this paper. In this paper, we use Latent Dirichlet Allocation
(LDA) [6] as a statistical model to infer an appropriate number of latent topics needed to opti-
mize the topic distributions over a set of source code fragments. Specifically, this work attempts
to simplify the parameter selection problem using observable characteristics of the software sys-
tem being modelled. LDA assumes a Dirichlet distribution on document generation from latent
topics, and also on word generation within a document from latent topics. We experiment with a
range of topic counts, using a heuristic based on a combination of cosine similarity and physical
proximity in the source code as a measure of likely relationship, and observe that optimal topic
counts emerge naturally using these measures. We use these observations to infer a general rule
for predicting and tuning the appropriate topic count for representing a source code system based
on its external characteristics when using LDA.

2. Background

A latent variable model specifies the distribution of a set of observed variables in which some
additional variables are assumed to exist and be unobservable. Whereas the observable variables
have been objectively measured in some way, the unobservable variables, called latent variables
or latent factors, are inferred somehow from the observed variables. Latent variable models differ
from traditional statistical models only in the sense that in addition to the observed data, some
hidden substructure is assumed to be present [1].

The main advantage of latent factor models is that they provide an improved model of the
system being studied: they strip away variation that is not of interest, that may be characterized
as noise, and they reveal deeper relationships between the parts of the system, relationships that
may be obscured by the particular set of attributes being collected. A second important advantage
is that they enable the size of the data to be reduced. A large set of collected attributes may
be reduced to a much smaller set, making subsequent computations more practical. Therefore
prediction and clustering can be done using the latent factors rather than the collected attributes
with more robust results at less cost.

Some latent-factor models also rank the latent factors in order of importance, and provide
an indication of how significant each one is in the global system. This makes it possible to
truncate the representation even further. For example, singular value decomposition (sometimes
known as latent semantic indexing in the context of information retrieval) provides an ordered
set of singular values that have a natural interpretation as the importance of each associated latent
factor.

Researchers have been looking for latent factors in source code and program documentation
for over a decade [7]. Although it is, in a sense, straightforward to find some latent factors, it is
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substantially more difficult to interpret them as software or programmer concerns, and validation
is troublesome because of the lack of obvious ground truth.

Factor analysis based on matrix decompositions, using a matrix whose rows correspond to
program units, and whose columns correspond to terms, have been tried in software settings.
These include:

• Singular value decomposition (SVD), building on work in information retrieval in natural
language;

• Latent Dirichlet allocation (LDA), used as a topic-modelling approach in natural language;
and

• Independent component analysis (ICA), which is commonly used for factor analysis in
many settings, but has not been widely applied to natural language.

The original paper describing the use of singular value decomposition (often called Latent
Semantic Indexing, LSI) in program comprehension was tremendously influential, and led to a
great deal of further research in the area. Maletic, Valluri, and Marcus [7, 8] began exploring
LSI’s potential in software by performing a handful of clustering and classification experiments
for source code and documentation, and sought to determine LSI’s ability to cluster groups of
related code together. The early tests were promising, and suggested that even without a grammar
or solutions to the problems of polysemy and synonymy, LSI could be used to support some
aspects of the program-understanding process.

The decision about how many topics to retain when performing a singular value decomposi-
tion of a text corpus has been fairly subjective. Many authors propose somewhere in the range
of 200 to 300 topics [7, 8], and a recent study showed “islands of stability” around 300 to 500
topics for document sets in the millions, with performance degrading outside of that range [9].
Kuhn et al. suggest using smaller topic values, noting that a smaller number of topics may be
warranted for analyzing software corpora because the document count is smaller than typical
natural-language corpora [10]. However, source code documents are classes in their research,
whereas for us documents are methods or functions.

Latent Dirichlet Allocation [6] is a generative statistical model in which a set of latent topics
are assumed to determine the distribution of documents and terms. SVD looks for components
with uncorrelated variation and works for datasets in which the attributes are of any type. LDA
assumes a different statistical foundation which fits more directly onto language settings. In
particular it assumes that each document has a particular distribution of topics, and that each
term is chosen by first choosing its topic and then choosing a particular word from that topic. The
LDA algorithm then tries to estimate the topic distribution from the term use in the documents.
A topic is therefore a related set of terms which, in turn, induces relationships on the documents.
With LDA, the topic count is a user-defined parameter that must be provided before the model is
generated. Algorithmically, if the document-term matrix is n × m, and the LDA model is asked
to find t topics, the result is an n × t matrix giving the membership probability of each document
in each topic, and a t × m matrix giving the membership probability of each term in each topic.

While the data reflects a bag-of-words model, the frequencies of words in documents are not
independent, and order matters. LDA allows this more subtle information to be partly taken into
account, for example because it reflects the fact that the presence of one word in the next slot of
a document prevents other words from occupying that slot.
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The first application of LDA to source code was in 2007, when Linstead et al. began to use
LDA to visualize topic emergence over several versions of a project [11, 12]. Shortly afterwards,
in 2008, Maskeri et al. showed its application to the extraction of business topics from source
code [13]. Preliminary results indicated that some valid clustering was occurring, that topics
were being identified, and interestingly that the topic count for a large scale software system like
Linux appeared to be just under 300.

Thomas et al. [14] investigated how topic models can be used to describe the evolution of
source code with a study over 12 releases of a well documented system. In their study, they
were able to show that topic evolution coincides with observable changes in the source code,
and that topic models can be used to understand the development and design history of a project.
This research led them to the Diff model [15], an extension of an existing evolution model,
taking software corpora into consideration by noting that most documents are not altered between
versions and most changes are small. In this way, the authors imply that there is a notable
difference when using source code instead of natural language as input documents to a topic
model.

The role of topics in software development has been examined in detail by Hindle et al..
To gain an understanding of the current state of a project, windowed topic analysis [16] was
proposed, in which the model of a software system is generated using information from a small
window of time. Many topics that are local to a small portion of the project’s life turn out to be
relevant and interesting. Additionally, some topics recur over the life of a project. The authors
later demonstrated [17] how many of these topics can be named using an automated approach.

Lukins et al. [18] used LDA and Latent Semantic Indexing (LSI), a well-known information
retrieval technique, in a study comparing performance for bug localization in software. Bug
localization involves using known information about a bug to identify the source code needed
to correct the problem. To show how LDA compared to LSI, several case studies were used
to show that the LDA-based bug localization technique performed at least as well as LSI-based
techniques, and in many cases, performed much better.

Requirements traceability is a challenging problem that involves describing and following
a requirement in forward and backward directions [19]. While there are many benefits in re-
taining information about a requirement’s life, the lack of automated techniques for generating
traceability links can often make recovery a costly process. Antoniol et al. first explored the
usefulness of using information retrieval techniques to analyse project documentation, including
specifications, design documents, logs, and other available related text sources, in an attempt to
recover traceability links [20]. The results of their study indicated that these information retrieval
techniques afford some ability to recover traceability links in a semi-automatic way. Marcus and
Maletic [21] expanded the analysis to include Latent Semantic Indexing as a querying model,
and determined that, when recovering links between source code and documentation, this model
performed at least as well as the probabilistic or VSM methods.

Although LDA has been shown to be effective in modelling software source code, it is not
as applicable to the traceability problem. In fact, when compared to simpler models such as the
Vector Space Model, assuming no latent topics and simply observing similarity between tokens
in each document, studies such as those performed by Oliveto et al. [22] indicate that the Vector
Space Model outperforms LDA. This result is inconsistent, as a study by Asuncion et al. [23]
indicates that on some systems, LDA seems to perform traceability recovery as well as or better
than LSI.

LDA is widely used in the data-mining community for document classification and concep-
tual analysis. A corresponding lack of interest in older techniques like LSI seems to indicate
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that newer approaches are producing better results, and are garnering more attention due to their
successes.

It is important, although difficult, to choose appropriate parameter values for models. With
that in mind, optimal parameter selection has been an active area of research. Support vec-
tor machines are statistical classifiers that depend on good parameter selection to be effective.
Schölkopf et al. [24] introduce a new algorithm called ν-SVM that eliminates one parameter
from standard models, but must also be carefully selected. Steinwart [25] builds on this work
to obtain good estimates of the ν parameter. The impact of the Dirichlet hyperparameters used
in LDA was examined by Wallach et al. [26], leading to a conclusion that LDA can be opti-
mized by modifying the structure of these parameters to handle stop words more appropriately
and improve topic consistency.

The motivation for the research described here stems from our earlier work using latent factor
models to uncover relationships in source code. We experimented with Independent Component
Analysis [27] as a way to identify latent structure in source code, and attempted to show how it
could be used as a way to identify related blocks of information [28, 29]. We also used latent
models to identify clones, and showed that some variance in the syntactic data can be resolved
through the latent semantic information identified by these models [30]. Although these results
have been promising, we remained curious about how to choose how many latent factors are nec-
essary to best fit the data. Our attempts to test different values often led to subjective evaluations,
or an inability to discover if one value was better than the others, which led us to investigate the
relationship in its full generality.

We began by using a preliminary version of the approach developed in this paper to examine
17 small to medium sized software systems [31]. By combining a pair of heuristics and using a
range of latent topics, we showed that a good topic count estimate for describing a source code
corpus could be obtained. Incrementing the number of topics and testing the relevance within
the model of the source code fragments associated with each topic showed a clear performance
peak, and therefore what we believe to be the appropriate number of topics to use for this task.
This paper expands on our work by introducing new systems, including some large ones such as
the entire Linux system. We also generalize the approach and derive a simple equation that can
be used to estimate appropriate topic counts for arbitrary software systems. Our derived results
are similar to previously observed empirical evidence.

3. Approach

The goal of this research is to identify a method for estimating the appropriate number of
latent factors for a software system, preferably as a function of easily computed, large-scale
properties. Previous research has relied on determining whether or not these latent topic models
were able to identify relationships in source code documents, but did not focus on the number of
topics that best represents the data. We do this by, first, clustering the methods of each software
system into varying numbers of latent topics using LDA, and then assessing the appropriateness
of each of the resulting models.

Since we have no ground truth for the “right” number of clusters, we must also develop
measures to capture the intuitive idea of the “appropriate” number of clusters. We design two
measures that estimate the relationships between code fragments. The first measures the extent
to which the LDA clustering is internally consistent; the second the extent to which its clusters
fit with external structure of the system being studied.
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Figure 1: Converting a document-term matrix into a set of topics and related code fragments. We begin with a matrix or
probabilistic representation of the original document set, abstracting away the tokens, and only considering the presence
or absence of tokens. After a latent model is derived from this data, the collection of topics can be examined, and the
most relevant documents for each topic can be identified.

Given a source-code corpus (generally segmented into methods or functions, but any source
code fragment is acceptable), a simple parse extracts the terms of interest from each document.
In our case, these are programming-language keywords, and programmer-defined names. Since
many programmer-defined names have internal structure, we separate such names into their com-
ponent pieces if they have been built in one of the standard ways (for example, breaking at un-
derscores) and count the entire name and all of its sub-pieces as terms. For example, the term
get attribute would be represented by three terms: get, attribute, and get attribute.

These data are assembled into a document-term matrix, each row of which corresponds to a
document (method, function), each column corresponds to a term, and where the element at (i, j)
in the matrix is the frequency of occurrence of term j in document i. The row count of the matrix,
n, is the document count, and the column count, m, is how many distinct terms exist across the
entire corpus.

LDA is applied to this document-term matrix. Like most clustering algorithms, the desired
number of topics or clusters, t, is an input to the algorithm. The result is an n × t matrix whose
element at (i, j) represents the probability that document i is in topic j, and a t ×m matrix whose
element at (i, j) is the probability that term j participates in topic i. This is therefore a soft
clustering of documents into topics, and words into topics; if necessary, this can be converted to
a hard clustering by allocating each document and term to the topic in which it has the greatest
probability.

We want to assess, for each topic count choice, how well the LDA clustering has succeeded
in placing similar code pieces in the same topic. To do this we use two measures.

3.1. Cosine similarity of co-clustered code

If the LDA clustering were perfect, then each row of the document-topic matrix would con-
tain a single 1 in the column to which the document associated with that row was allocated, and
zeros everywhere else. However, the allocation of a document to clusters will not always be
so tight – there will a maximum value in its row that is used to allocate it to a cluster, but the
other entries may also have substantial probabilities. In the worst case, the maximum may not
be much larger than the next largest. A simple measure of cluster quality across the entire set of
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documents is to compute the average probability of the winning cluster for each document. This
is problematic because, while it would be 1 in a perfect clustering, it is not clear how large to
expect it to be in an imperfect but realistic one.

Instead, we measure the quality of the clustering by computing the cosine similarity, in the
document-topic matrix, for pairs of documents. Each row of the matrix consists of the member-
ship probabilities of each document in each of the clusters. Similarity of a pair of records could
be measured by the Euclidean distance between their rows, but it is better instead to consider
each row as a vector, and measure similarity of pairs of records by the angle between these two
vectors – vectors that “point” in the same direction are similar, even though one might be much
longer than the other. In other words, two records are similar if their probability vectors have
similar patterns of high and low values, regardless of their absolute magnitudes.

The computation for cosine similarity is given by

cos θ =
d1 · d2

|d1||d2|

and its value ranges between +1 for vectors that point in the same direction, to 0 for orthogonal
vectors, to −1 for vectors that point in opposite directions.

As the topic count increases, it becomes inherently more likely that similar source-code frag-
ments lie in the same topic, so this measure is broadly increasing as a function of the topic count.
The rate at which it increases is the property of interest. To ensure that we consider only the
nearest neighbours in the model evaluation, we would like to restrict the number of neighbours
that we look at to only small values. It may be sufficient to only look at the top-ten nearest
neighbours. However, in our study, we use four different values to see if varying the number of
nearest neighbours has an effect on parameter estimation.

In our study, we use kD to refer to the nearest neighbours for a document, and use values from
the range 5, 10, 25, and 50.

Most systems will have some outlier fragments that do not fit well into any of the clusters,
so the measure may not reach 1. For example, code fragments like a main() method will have
many neighbors, but they will tend to be significantly different in their term use and so far away
in cosine difference.

In addition to the per-document nearest neighbours, we are also concerned with the docu-
ments that are most strongly related to a topic. For example, for topic t, what are the kT source
code fragments that have the highest probability of being generated from that topic? Or, to put it
another way, what are the kT source code fragments that best represent this topic?

The values kD and kT are constants, so we consider the same number of similar code frag-
ments for each document and topic.

3.2. Code Locality

Our second measure is based on proximity in the source code structure. We assume that two
code fragments are likely to be related if they are contained in the same region of the source-
code tree. The underlying assumption is that developers structure code in a relatively ordered
way, and so, conceptually related code fragments will often be found together. Depending on the
particular structure and size of the code, we use either files or directories as the relevant units of
the source-code tree.

Some evidence exists to justify the assumption that developer choices of source-code tree
organization reflect similarity of code. In our earlier research using information retrieval methods
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Figure 2: Nearest neighbour measure: code fragments d1 and d2 are qualitatively similar since their counts for topics
1 and 2 are proportional, although of different magnitudes. Their cosine distance is small. Fragment d3 is significantly
different from each of them.

/httpd-2.3.8/modules/aaa/mod_auth_basic.c

/httpd-2.3.8/modules/aaa/mod_auth_digest.c

...

/httpd-2.3.8/server/util_xml.c

Figure 3: Proximity measure: Two code fragments are likely to be conceptually related if they are found in the same file
or folder. The source code files mod auth basic.c and mod auth digest.c are more likely to be conceptually related than
mod auth basic.c and util xml.c, or mod auth digest.c and util xml.c, as they lie closer together in the package structure.

to locate clones [30], the results suggested a correlation between clones and latent topics. While
it is not true that all clones are conceptually related, they are more likely to be conceptually
related than not.

Roy and Cordy have analyzed the proximity of clones to one another in a range of open-
source applications and languages [32], and have observed that, in most cases, the majority of
clones are found in the same source file or folder. Most larger systems exhibit this effect, but it
does not always hold for all applications and languages. In particular, in recent work on cloning
in Python, clones were observed to be more distributed across the application structure than in
other languages [33]. Even in the worst case, where clones are evenly distributed across the
application, the justification only needs to rely on the fact that clones are more likely to be found
near one another in the source-code tree than two random source code fragments.

We decided to use code locality instead of clones as a measure for two main reasons. Code
locality provides a larger set of comparisons to make, as code clone pairs make up a small subset
of the total number of code fragment pairs. Also, source-code clones are likely to score highly
in document-term models because, by definition, they already have a large percentage of tokens
in common.
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The nearest-neighbour score for the latent model describes how well the winner-take-all strat-
egy for allocating records to clusters matches a more generic similarity measure. The proximity
score describes how well the clustering generated from internal evidence of the source code
agrees with the implicit external evidence that drives the arrangement of the source-code tree.

3.3. Combining Nearest Neighbours and Code Locality

Two unsupervised measures are provided for determining whether or not a source code frag-
ment is related to another source code fragment. We combine the two measures to allow for an
unsupervised method for evaluating the ability of a latent model to describe the latent relation-
ships that we would like to uncover in the document set.

For each document, the kD nearest neighbours are determined using the cosine distance. From
these kD neighbours, the fraction of the documents that exhibit code proximity is calculated.
The average score over all documents is calculated, and referred to as the document proximity
measure; the average number of source code fragments that exhibit code locality in the top kD

nearest neighbours for each function in the software system.
For each topic, the kT source code fragments that are most strongly related to it are found,

and these can be considered the documents that best represent the information uncovered by this
latent topic. From these kT fragments, the fraction of the documents that exhibit code proximity
is calculated. The average score over all topics is calculated, and referred to as the topic proximity
measure; the average number of source code fragments that exhibit code locality in the top kT

functions relevant to each topic in the latent model.

3.4. Experiments

A Python script for our framework is available from the website [34]. The LDA implemen-
tation used is the freely available GibbsLDA++ package [35]. The only parameter modified in
GibbsLDA++ was the topic count.

Each source code package was segmented into individual methods or functions without com-
ments using TXL [36], and tokenized into lower-case strings. We retain all other keywords,
including those that are programming-language specific. Although these keywords are likely to
be found in a majority of the input data, they are similar to common words in natural language,
and do not necessarily affect the results. This data was used as input for GibbsLDA++ on each
run. Our Python script was used to automate runs with varying numbers of topics and to calculate
the measure scores for each clustering. The experiments involve a large parameter sweep over:

• A range of systems of varying sizes and purposes, and written in a range of languages
(Table 1);

• A number of clusters, ranging from 50 up to the number of clusters where the topic prox-
imity score begins to decrease in large systems (although we use a topic step of 25 in
medium systems and 5 in small systems);

• Ranges of kD and kT of 5, 10, 25, and 50.

We show two examples of these measures, for the C functions of the source code of the
PostgreSQL database system. Figure 4 shows how the document proximity scores vary as the
topic count increases. As the topic count increases, it becomes increasingly likely that the kD

nearest neighbors of any code fragment will be in the same topic, although there is, as expected,

9



Corpus Location Code Fragments
abyss (C) http://abyss.sourceforge.net/ 148
bison (C) http://www.gnu.org/software/bison/ 315
cook (C) http://miller.emu.id.au/pmiller/software/cook/ 1362

freebsd (C) http://www.freebsd.org/ 53260
gzip (C) http://www.gzip.org/ v1.2.4 117
httpd (C) http://httpd.apache.org/ 5758
linux (C) http://www.linux.org/ 2.6.37 256779

linuxkernel (C) linux, kernel directory 3964
postgresql (C) http://www.postgresql.org/ 4689

weltab (C) http://www.bauhaus-stuttgart.de/clones/ 123
wget (C) http://www.gnu.org/software/wget/ 219
snns (C) http://www.ra.cs.uni-tuebingen.de/SNNS/ 2213

castle (C#) http://www.castleproject.org/ 9530
db4o (C#) http://www.db4o.com/ v7.4 13855
linq (C#) http://msdn.microsoft.com/ 638
nant (C#) http://nant.sourceforge.net/ v0.86 beta 1 2383

rssbandit (C#) http://www.rssbandit.org/ v1.5.0.17 4587
django (Python) http://www.djangoproject.com/ 7084
plone (Python) http://plone.org/ 1899
zope (Python) http://www.zope.org/ 37101
derby (Java) http://db.apache.org/derby/ 32781

hadoop (Java) http://hadoop.apache.org/ 21478
heritrix (Java) http://crawler.archive.org/ 4762
jforum (Java) http://jforum.net/ 2437

jhotdraw (Java) http://www.jhotdraw.org/ 2536
ofbiz (Java) http://ofbiz.apache.org/ 14707

Table 1: A list of the source code packages used in this study, and where to obtain them.

a dependence on how large kD is. Notice that, for large kD = 50 the curve turns down as the
number of clusters increases, because the size of some clusters drops below 50.

Figure 5 shows, for the same corpus, the topic proximity scores as the topic count increases.
The maximum values are found at around 75 to 125 clusters, depending on the value of kT , after
which the topic proximity score begins to plummet, and the topics lose their coherence. Note
that the dependence on kT is not monotonic.

4. Results

Table 2 provides a summary of our results. Each source-code corpus (set of methods/functions)
is listed by name and description. The number of individual tokens (words) in the whole corpus
is provided, and the number of code fragments (functions/methods) given as documents is listed
to provide an idea of the size of the system. The LOC (lines of code) metric for our purposes is
restricted to the non-trivial, non-empty lines. We strip out comments and whitespace, and focus
on the lines with interesting code. The cluster peak indicates the point at which the topic prox-
imity score reaches a plateau, and so where the topic proximity measure suggests that the latent
factors best capture the relationships between the code fragments. Adding more topics after this
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Figure 4: PostgreSQL document proximity scores. An estimate on the amount of original accuracy retained with lower
topic counts can be plotted.
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Figure 5: PostgreSQL topic proximity scores. A clear peak emerges around 75 to 125 topics, suggesting that the appro-
priate number of latent topics lies in this range.
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Corpus Tokens Code Fragments LOC Topic Peak
cook (C) 3992 1362 35k 75-100
snns (C) 9625 2213 63k 75-100

linuxkernel (C) 12379 3964 57k 100
postgresql (C) 16700 4689 111k 75-125

httpd (C) 20488 5758 124k 125
freebsd (C) 225139 53260 1311k 450
linux (C) 829195 256779 5050k 650
linq (C#) 1993 638 8k 100-125
nant (C#) 6133 2383 30k 150-175

rssbandit (C#) 10871 4587 68k 150-200
db4o (C#) 13658 13855 97k 200-225

jforum (Java) 5295 2437 21k 75
heritrix (Java) 10374 4762 43k 150
ofbiz (Java) 35931 14707 227k 250
derby (Java) 58623 32781 383k 250

hadoop (Java) 33265 21478 225k 300
plone (Python) 5590 1899 20k 125

django (Python) 14160 7084 55k 275
zope (Python) 46553 37101 453k 350

Table 2: Source code results where a clear proximity score peak emerges.

Corpus Tokens Code Fragments LOC Topic Peak
gzip (C) 940 117 4k 5-10
abyss (C) 641 148 2k 10-15
weltab (C) 736 123 10k 10-15
wget (C) 1520 219 7k 20-25
bison (C) 2024 315 9k 20-25

castle (C#) 14779 9530 88k 175-225
jhotdraw (Java) 3133 2536 16k 100-200

Table 3: Stabilization of topic proximity scores where no document proximity score peak emerges.

point decreases the ability of the clustering to extract the latent relationships; similarly, choosing
too few topics aggregates unrelated fragments too strongly.

Table 3 shows the results for systems where the topic proximity score did not show a clear
peak.

In smaller systems, and those that use methodologies such as aspect-oriented programming,
the locality of source code in files and folders may be reduced. Unsurprisingly, the measure
does not perform as well for such systems. Table 3 lists a set of systems where clear peaks in
the proximity scores were not present. Figure 6 shows the results in more details for one such
system. The nearest neighbor score remains useable, and from this, we can estimate how well
the model identifies the latent structure. For example, if we know that, in our other examples,
the proximity score peak was typically found just before the point at which the nearest neighbor
measure flattened, we can claim that the ideal proximity count should be around this number.
This claim is strengthened by recent work in the clone detection community, demonstrating

12



50 100 150 200 250 300 350 400 450 500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Topics

Pe
rc

en
ta

ge
 o

f B
es

t S
co

re

 

 

kT=5
kT=10
kT=25
kT=50

Figure 6: JHotDraw proximity scores. In the cases where there is no peak, the results are often an almost flat plot. In our
sample data set, the nearest neighbour score plots always resembled Figure 4, even in the cases where no peak emerged.
Graphs like this are almost exclusively found in packages with either poor or simple folder structure, or a small number
of fragments.

a clear relationship between proximity in the package structure and the likelihood of finding
clones [33]. Using this, together with our observation that clones often share similar semantic
information and are frequently identified as semantically related in latent models [30], we believe
that the proximity score is a reasonable measure.

Thus the strategy for using the two measures is this: if the proximity score shows a clear
peak, then the location of this peak is taken to indicate the appropriate number of clusters. When
it does not show a peak, then the value for which the nearest neighbor score flattens is taken to
be the appropriate number of clusters. Uncertainties about the point of flattening can be resolved
by comparing the system to others of similar size that do exhibit a peak.

A majority of the source code datasets that we analyzed showed a clear peak where the
proximity score was maximized, although the peak varied in magnitude and location. From
Table 2 and Table 3, the appropriate number of topics is often slightly less than the commonly
assumed default of 300 dimensions for source-code packages of twenty thousand code fragments
or less. The data hints at a fractional power growth in the best number of latent factors as the
document count increases. As noted earlier, the topic counts also seem to be language dependent,
so that it is not always true that code written in C would use the same number of topics for its
bes fitting model as code written in Python or C#.

The idea of the proximity score is not tied to only using proximity in the source-code tree.
Other mechanisms that measure conceptual relationships between source-code fragments would
serve equally well. The essential feature is that it determines code fragment similarity extrin-
sically, and so provides an objective measure against which to compare the clustering. As an
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Figure 7: The curve fitted to the results. The x-axis measures the number of source code fragments. The y-axis measures
the number of topics that our approach has estimated for the appropriate value.

example, consider a measure in which two source code fragments are treated as conceptually
similar if they have shared a version control change list. A large number of false positives will be
identified by this measure, and it may not cover the entire source code base. However, because
this captures some of the conceptual similarities in the code, it can be used as a replacement for
proximity score, and could therefore be used to evaluate the performance of a latent factor model.

To estimate appropriate topic counts for future research, we fitted a curve to the predicted
best number of clusters across our results. This was done in Matlab, by taking the results from
Table 2 and Table 3 and fitting a power curve to the data. We experimented with fitting three
curves based on: the number of code fragments, the counts of the number of terms, and the
non-trivial lines of code in each system.

Figure 7 shows the curve fitted to the number of code fragments for all of the source-code
packages we used. The fitted curve is given by:

t(x) = 7.2267 ∗ x0.3636 (1)

For a source-code system with x code fragments, t(x) provides an approximation of the ap-
propriate number of topics to model the data. This suggests that, when systems are large enough,
there is considerable latitude in choosing the right number of clusters, as the curve is flat over
large size ranges. For smaller systems, the appropriate number of clusters is sensitive to system
size, and more care is needed. Figure 9 provides the curves fitted to the tokens and the lines of
code.
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Figure 8: A close-up of the curve fitted to the method results from Figure 7. The x-axis measures the number of source
code fragments. The y-axis measures the number of topics that our approach has estimated for the appropriate value.
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Figure 9: For completeness, we include the curves fitted to the number of tokens and lines of code obtained from our
data.

Equation 1 is a specific fit to the individual cases that we reviewed in this study. We generalize
this equation as follows:

t(x) = 7.25 ∗ x0.365 (2)

Equation 2 provides an estimate for the appropriate number of topics for source code using
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Corpus Code Fragments Topic Peak Eqn. 1 Estimate Eqn. 2 Estimate
cook (C) 1362 75-100 100 101
snns (C) 2213 75-100 119 121

linuxkernel (C) 3964 100 147 149
postgresql (C) 4689 75-125 156 159

httpd (C) 5758 125 168 171
freebsd (C) 225139 450 378 385
linux (C) 829195 650 670 683
linq (C#) 638 100-125 76 77
nant (C#) 2383 150-175 122 124

rssbandit (C#) 4587 150-200 155 157
db4o (C#) 13855 200-225 232 236

jforum (Java) 2437 75 123 125
heritrix (Java) 4762 150 157 159
ofbiz (Java) 14707 250 237 241
derby (Java) 32781 250 317 323

hadoop (Java) 21478 300 272 276
plone (Python) 1899 125 112 114

django (Python) 7084 275 182 184
zope (Python) 37101 350 331 337

Table 4: A summary of the latent topic estimates using the heuristic method, Equation 1, and Equation 2.

LDA based on our observations of several dozen software systems. The estimates given by
Equation 1 and Equation 2 are summarized in Table 4 along with the suggested topics of the
measure-based approach. As expected, the equations suggest too few clusters for small systems,
but are otherwise remarkably robust across a range of system sizes, and for systems written in
different languages.

This equation can be compared to an estimate given by Kuhn et al. in [10]. For an m × n
document-term matrix, where m is the number of documents (classes, instead of methods or
functions) and n is the total number of terms over all documents, the authors suggest using a
value of (m × n)0.2. While this exponent is less than the value obtained by our study, there are
some strong similarities between the two equations. In the software systems we examined, the
average term-to-document ratio suggests a linear relationship with the tokens and source code
fragments. From this, we can approximate the equation by replacing n by m to get (m2)0.2, or
m0.4. The exponent 0.4 suggests that as the number of documents increases, the appropriate rate
of change between their topic count and our topic count is roughly similar.

5. Analysis

5.1. Evaluating New Systems

In this section, we apply Equation 2 for one previously examined system and three new
systems, and obtain the proximity scores described earlier to identify the topic peak. The values
are compared to evaluate the performance of Equation 2 for new systems.

Table 5 lists four new systems used in the analysis. For httpd, we use the same project as
earlier, but use a version of the source code that is nearly two years more recent. The php-src and

16



Corpus Location Code Fragments Topic Peak Eqn. 2
httpd (C) http://httpd.apache.org/ 4148 100-125 151

memcached (C) http://xbmc.org/ 288 30 57
php-src (C) http://php.net/ 8170 125-175 194
xbmc (C) http://xbmc.org/ 22059 275-325 279

Table 5: A summary of the latent topic estimates for new systems using the heuristic method and Equation 2.
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Figure 10: Topic distribution plots for a more recent version of httpd that was not used in determining the appropriate
topic count equation. In this system, the function count is 4148, and Equation 2 suggests an appropriate topic count of
151.

xbmc systems are open-source projects of a non-trivial size. The php-src project includes the full
repository of the PHP language interpreter. The xbmc project is an open source software media
player and entertainment hub for digital media. The memcached project is relatively small open-
source project that acts as a distributed memory object caching system used to lighten database
load. Each of the projects was processed using the approach detailed in Section 3.4, and a range
of models with differing topic counts was generated.

Each of the topic peaks observed and listed in Table 5 is close to the estimated value given
by Equation 2. As the only other previously observed project, httpd is comparable to the earlier
estimate given in Table 2. The newer version of the source code contains fewer functions, and
exhibits a topic peak similar to the earlier version but slightly lower by approximately the same
amount. The memcached, php-src, and xbmc projects have estimates that are reasonably close to
the observed topic peaks.

The topic peaks for the three new systems are provided. Figure 10 shows the topic peak for
httpd. Figure 11 shows the topic peaks for memcached, php-src, and xbmc.

5.2. Optimizing for Co-maintenance
To show the practical benefits of the proposed heuristic, we apply the approach to the problem

of idenfifying co-maintenance relationships in source code. Co-maintenance is an observable
property of software systems under source control in which source code fragments are modified
together in some time frame. For example, implementing a feature may involve many individual
changes across several methods or files. A changelist groups these individual changes together
[37]. Each changelist in the history of the project can be considered to be a set of modified
code fragments. A topic model that captures accurate information about the co-maintenance
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Figure 11: Topic distribution plots for memcached, php-src, and xbmc, three new systems not used in determining the
appropriate topic count equation. The memcached system contains 288 functions, and Equation 2 suggets an appropriate
topic count of 57. The php-src system contains 8170 functions, and Equation 2 suggests an appropriate topic count of
194. The xbmc system contains 22059 functions, and Equation 2 suggests an appropriate topic count of 279.

relationships of source code should cluster well within changelists, since developers often submit
changelists modifying code fragments that are related to one another. As in Section 5.1, we apply
Equation 2 for one previously examined system and two new systems to show that the estimated
topic count produces clusters that demonstrate co-maintenance relationships and are reasonably
sized and well distributed.

In our earlier research [38, 39], we explored the relationship between topic models and co-
maintenance history by introducing a visualization that compares conceptual cohesion within
changelists. This view of the project history can give insight about the semantic architecture
of the code, and identify a number of patterns that characterize particular kinds of maintenance
tasks. One strong motivation for this research is the ability to use a topic model, such as LDA, to
identify co-maintenance relationships without the need to mine the revision history. For example,
in projects that have no revision history, topic models can still be used to extract co-maintenance
relationships.

Each visualization is generated as an interactive HTML page, based on the input from a
source code repository and some secondary source, such as a topic model. The rows of the
display are the list of relevant changelists over the history of the project, starting at the oldest,
and progressing forward towards the newest revisions at the bottom. Each column in the display
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Figure 12: A full view of the visualization for approximately 35 consecutive changelists in httpd’s history. Each blue
square on the left defines a horizontal row corresponding to a changelist. Each column corresponds to a topic, and each
coloured circle represents some number of modified code fragments from that topic. The size and colour of each circle
shows how many code fragments from that topic were modified in this particular changelist.

corresponds to a of the concepts described by the model. The circles of varying size and colour
on each row are an indication that some code fragments were modified in that changelist. The
horizontal location of the circle indicates the concept in which the modifications were made.

Figure 12 provides a demonstration of this visualization. We plot a portion of the change
history for the Apache httpd webserver using an LDA model with 100 topics. Each row in the
table corresponds to a changelist, with the oldest changes at the top of the table, and the most
recent at the bottom. The circles are colour-coded and sized to indicate the number of code
fragments they represent. In this demonstration, we use the largest red circles to indicate five
or more code fragments that are associated with a concept, ranging down to a single small grey
circle for one code fragment.

The clustering of co-maintained source code inside changelists can be used to evaluate the
effectiveness of a topic model for software maintenance. For example, in a topic model that
captures information about the co-maintenance of software methods, each changelist can be ex-
pected to modify a small number of topics in the model. In the visualization shown in Figure 12,
this would be represented by many large red circles and relatively few small grey circles. If the
topic model does not capture co-maintenance, each changelist would modify a large number of
topics, as co-maintained code fragments would not be clustered together in the model.

We consider the size of clustered code fragments by topic inside of changelists when evalu-
ating the quality of the topic distribution with respect to the co-maintenance history of a software
project. In the simplest case, it would seem ideal to have code fragments from a single topic
modified in each changelist. Each changelist would be relevant to a single conceptual area, and
all of the source code would be related within a topic. However, this is not an acceptable perfor-
mance metric; a topic model generated with one topic would suggest the positive result that each
changelist modifies a single topic, when the model is actually capturing nothing of value. To
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Figure 13: Average cluster size within changelists for the php-src system, designated by circles in Figure 12. For
small topic counts, the average cluster size will be extremely large, and for large topic counts, the average cluster size
and standard deviation will be very close to zero as each code fragment will be associated with a different topic. The
interesting point is the dip in the average size and standard deviation, seen near 200 topics; this indicates the point where
clusters at the extreme sizes are minimized, and arguably where the model best represents co-maintenance relationships.

mitigate this problem, we consider the average size of all clusters (for example, the average size
of each of the clusters represented by a coloured circle in Figure 12), and the standard deviation
of the set of clusters. This information shows that in addition to a good amount of clustering
within changelists, there is still a reasonable distribution of code fragments over topics.

Figure 13 shows a graph of the average cluster size within changelists for php-src. These
clusters are designated by circles in Figure 12, and range from approximately 17,000 to 23,000
individual clusters depending on topic count over the entire project history. For small topic
counts, the average cluster size will be extremely large, due to code fragments being necessarily
allocated to the same topic, even if they are unrelated. For large topic counts, the average cluster
size and standard deviation will be very close to zero, as models will approach the point at which
each code fragment will be associated with its own topic. The interesting point is the dip in the
average size and standard deviation, indicating the point where clusters at the extreme sizes are
minimized. This valley in the standard deviation suggests that unrelated code fragments are not
being over-associated with topics, and that related code fragments are not forced into separate
topics due to a high choice for the topic count parameter.

6. Threats to Validity

Using measures defined pragmatically as an evaluation method is inherently problematic.
That said, there is no good set of data to provide ground truth about conceptual relevance of one
software fragment to another. Concept location has lacked a way of giving empirical evidence for
the results, and we believe that using measures like this is a valid first step towards verifying these
methods. Measures that provide more accurate results may exist, and new datasets can be created.
We discuss our continuing research towards producing data in this vein in the conclusions section
of the paper.

Our approach also relies heavily on the ability of LDA to model the data well, and in the topic
distribution as a way of describing documents. Although LDA is known to give good results in
the natural-language setting, it has not yet been convincingly demonstrated that it outperforms
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competing methods such as singular value decomposition or independent component analysis
when applied to source code. In natural-language settings, the use of words as terms is intuitive;
in software settings, there are significant choices about which syntactic entities should be treated
as terms: keywords, operators, variable and method names (and in what subforms), white space,
and comments. Encapsulation also means that names that are implicitly present in a particular
context, such as a method, are not syntactically visible, but play important roles at run-time. On
the face of it, including such names as terms should improve clustering.

Although we have studied a number of open-source systems covering several different pro-
gramming languages, we recognize a threat to external validity that must be addressed. Our
survey of systems is not comprehensive, and any value obtained from Equation 2 must be con-
sidered an estimate.

The use of source code locality as a heuristic for evaluating the quality of topic clusters is
imperfect, and in many cases, locality does not always correlate to conceptual similarity. Poorly
structured systems will pose problems for this approach. In the majority of systems that we
have examined, and in particular those of a non-trivial size, there was enough structure in the
system to use this approach. However, we believe that most topics tend to occur within modular
boundaries. This is supported by our recent research [39] described briefly in Section 5, in
which we performed a detailed analysis of changes by topic over time using the revision control
history of several projects. Based on this analysis, we believe that most topics have at least some
locality with respect to modules. One surprising result from this work was a significant lack
of evidence for cross-cutting topics. Traditional aspects, such as logging functions, were not
identified as individual topics when using LDA. Instead, the logging components of individual
subsystems tended to be grouped together with other similar parts of that same subsystem. In
general, we have not observed traditional aspects showing up as individual topics in a model. In
systems where the source code locality heuristic is not appropriate, it can be replaced by another
approach. For example, instead of using a boolean locality heuristic between two source code
fragments, it is possible to use a boolean value indicating whether the two source code fragments
have been co-modified in the past.

The value of retaining comments during the preprocessing and partitioning stage is unclear.
Our process currently strips all comments from the source code before it is segmented into docu-
ments, and while this is a fairly common process in concept location, the exact value of comments
is not known. We plan to perform additional tests to see how this affects our proximity scores.
While we are unsure whether comments should be included or not, in the context of this study
we have remained consistent by omitting comments throughout.

This research has focused on optimizing LDA’s topic count parameter. We made no attempt
to optimize for the alpha and beta parameters used to shape the document-topic and topic-word
distributions.

As mentioned earlier, the values kD and kT are constants over the entire data set. Considering
the same number of similar code fragments for each document and topic may not be appropriate
due to the underlying Dirichlet distributions. In the case of topics, for example, it is possible for a
topic to be generated that no document is most associated with. Some documents are strong out-
liers, having few or no interesting relationships with other code fragments in the system. Varying
the values kD and kT may allow for the heuristics to describe the system more appropriately.
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7. Conclusions and Future Work

We have presented a method for estimating the appropriate number of topics in a latent model
by defining and using two measures. In many cases, this method identifies a clear peak in the
proximity score, that we assume predicts the ideal number of latent topics needed to extract
a hidden substructure that relates source-code fragments to one another. These results can be
generalized to give appropriate topic counts for arbitrary software systems. In one case study,
we show how the co-maintenance relationships in a software system can be used to demonstrate
that the topic clusters are reasonable.

The appropriate topic counts for small to medium sized source code packages appear to lie
below the standard count of 300 for software systems of around twenty thousand code fragments
or less. More importantly perhaps, the appropriate topic counts tend to be achieved when the data
is smoothed out to remove 10% to 20% of the original raw information. This smoothing effect is
similar to the noise reduction that occurs when the least relevant latent topics are stripped from
the data set, and the primary relationships are retained [21].

These measures provide a way to estimate the most appropriate number of topics needed to
describe a source-code corpus. This estimate can be used as a starting point for future studies
using LDA to provide a reasonable suggestion for the number of topics that models conceptual
structure appropriately. Although our study used Latent Dirichlet Allocation, we believe the
method is model-independent, and could be well suited to future studies with other techniques
like Latent Semantic Indexing.

A clear point that seems to arise is that the number of topics used when modelling source
code in a latent topic model must be carefully considered. In our example with the PostgreSQL
code, choosing 200 topics instead of 100 may result in a model that only identifies a fraction
of the desirable latent substructure. The choice of the number of latent topics for the model
may be more important than previously considered, and choosing arbitrary values may sacrifice
a significant amount of accuracy.
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