
A Survey of Table Recognition: Models,
Observations, Transformations, and
Inferences

R. Zanibbi, D. Blostein and J.R. Cordy
{zanibbi,blostein,cordy}@cs.queensu.ca

School of Computing,
Queen’s University,
Kingston, Ontario, Canada,
K7L 3N6

October 24, 2003

Abstract

Table characteristics vary widely. Consequently, a great variety of computational approaches
have been applied to table recognition. In this survey, the table recognition literature is
presented as an interaction of table models, observations, transformations and inferences. A
table model defines the physical and logical structure of tables; the model is used to detect
tables, and to analyze and decompose the detected tables. Observations perform feature
measurements and data lookup, transformations alter or restructure data, and inferences
generate and test hypotheses. This presentation clarifies the decisions that are made by a table
recognizer, and the assumptions and inferencing techniques that underlie these decisions.

1 Introduction

Many documents contain tables that could be recovered for reuse, compression, editing, and

information retrieval purposes. In table recognition, a definition of table location and com-

position (a table model) is used to recover tables from encoded documents. Hu et. al.[39]

have termed the two main sub-tasks of table recognition table detection and table structure

recognition. In table detection, instances of a table model are segmented. In table structure

recognition, detected tables are analyzed and decomposed using the table model. In this

paper we break down table detection and structure recognition further, describing both as

1

Table Model

Parameters and Other Data for
Inferences

Table Features
Table Hypotheses

Observations

Inferences

Transformations,
and Observations

Document
Observations

Observations

Figure 1: The Table Recognition Process. A table model defines the structures that a table
recognizer searches for. Table recognizers detect and decompose tables using observations,
transformations, and inferences. Inferences generate and test table location and structure
hypotheses. Observations provide the data used by inferences; these are feature measurements
and data lookups performed on the input document, table model, input parameters and
existing features and hypotheses. Transformations of features permit additional observations.
Input parameters define or constrain the table model, observations, transformations and
inferences of a table recognizer.

sequences of three basic operations: observations, transformations and inferences. Observa-

tions include feature measurements and data lookup, transformations are operations that

alter or restructure data, and inferences generate and test hypotheses (e.g. table locations).

In this survey we present the table recognition literature in terms of the interaction of table

models, observations, transformations and inferences, as presented in Figure 1. Surveys that

take other views of the literature are also available[28, 58, 59]. We use the view presented

in Figure 1 to assist us in answering important questions about the decisions made by table

recognizers: what decisions are made? What is assumed when decisions are made? What in-

ferencing techniques make decisions? On what data are decisions based? Table models play

a crucial role in the decision making process, as they define which structures are sought after

and define or imply a set of assumptions about table locations and structure. Input param-

eters define decision thresholds and tolerances, provide values for table model parameters,

and may include additional information used in decision making.

In the remainder of this paper we define tables and describe table models used in recognition

2

Body

Boxhead Separator

Boxhead

Term
Assignments Examinations

Ass1 Ass2 Ass3 Midterm Final
Final
Grade

1991

 Winter 85 80 75 60 75 75

 Spring 80 65 75 60 70 70

 Fall 80 85 75 55 80 75

1992

 Winter 85 80 70 70 75 75

 Spring 80 80 70 70 75 75

 Fall 75 70 65 60 80 70

Nested Column Header

Nested Row Header

Row Header

Stub

Stub Head

Cell Block

Stub Separator Column Header

Figure 2: Table Anatomy. The example and terms shown here are taken from Wang[89],
where terminology from the Chicago Manual of Style[23] is used. Though not shown in this
figure, tables often have associated text regions, such as a title, footnotes, or the source for
table data.

(Section 2), outline the observations, transformations and inferences used by different systems

for table detection and structure recognition (Sections 3, 4, and 5), address performance

evaluation methods used to determine the sufficiency of a table recognizer for a specific

recognition task (Section 6), and finally identify open problems and conclude in Section 7.

2 Table Models

Tables are one of the visualizations people use to search and compare data[55]. More specif-

ically, they visualize indexing schemes for relations, which may be understood as a set of

n−tuples where n is the number of sets in the relation[21]. The sets of a relation underlying

a table are called domains or dimensions. A relation may be presented many different ways

in a table. Dimensions may be laid out in different row and column arrangements, repeated,

or ordered in various ways. The arrangement of dimensions in a table affects which data are

most easily accessed and compared[17, 26, 55].

The parts of a table are described in Figure 2. Dimensions of a relation whose elements

are to be searched and compared in a table have their elements located in the body; the

3

names and elements of remaining dimensions are placed in the boxhead and stub as headers,

which are then used to index elements located in the body. The stubhead may contain a

header naming or describing the dimension(s) located in the stub. Often headers are nested

to visually relate dimension names and elements, and to factor one dimension by another.

For example, the dimension ‘school term’ is factored by ‘year’ in the stub of the table in

Figure 2; this is indicated by indenting (nesting) the ‘school term’ elements (e.g. ‘Winter’)

below the ‘year’ elements (e.g. ‘1992’). As another example, the header for element ‘Ass3’ is

nested below the name of its associated dimension (‘Assignment’). Regions where individual

dimension names and elements are located are called cells. A group of contiguous cells in

the body is referred to as a block. Cells are separated visually using ruling lines (e.g. the

boxhead and stub separators in Figure 2) and whitespace, or tabulation[21]. This results in

the familiar arrangement of cells in rows and columns. If the boxhead, stub and stubhead are

absent, we are left with a list or matrix of values; these do not have an indexing structure,

which is a defining feature of tables.

In practice individuals often alter or adapt the parts of a table as presented in Figure 2. For

example, headers or explanatory text might appear in the body of a table. In some cases,

tables even contain tables within cells, or are compositions of tables, producing complicated

indexing structures[26, 89]. However, the majority of tables studied in the table recognition

literature are described well by Figure 2.

Tables also often have associated text, including titles (e.g. Figure 6), captions, data sources

(e.g. Figure 3), and footnotes or additional text that elaborate on cells (e.g. Figure 6). The

text in a document that cites a table sometimes provides additional information regarding

a table’s contents[20]. The focus in table recognition so far has been on recovering tables

themselves; only a small number of papers have addressed text associated with a table[20,

69, 73, 86].

In this paper we will restrict our discussion to tables that present textual data, as this is the

class of tables that have been studied for recognition. This includes tables encoded in text

files (e.g. ASCII), such as the one rendered for presentation in Figure 6. Sources of plain text

tables include email messages and automated reporting systems (e.g. the EDGAR financial

4

Journal Full Name
Details

Appears Publisher

TPAMI IEEE Transactions on Pattern Analysis and Machine Intelligence monthly IEEE

IJDAR International Journal on Document Analysis and Recognition quarterly Springer-Verlag

PR Pattern Recognition monthly Elsevier

IJPRAI International Journal on Pattern Recognition and Artificial Intelligence eight times/year World Scientific

Source: from a listing of pattern recognition journals provided online at http://www.ph.tn.tudelft.nl/PRInfo/

Figure 3: A Table Describing Document Recognition Journals. This fully ruled table was
rendered by an HTML viewer using the source file shown in Figure 5. Note the text below
the table indicating the source of the data presented in the table.

reporting system[51]). Also included in our discussion are tables encoded in HTML, which

we describe in next section. The remainder of Section 2 addresses the physical and logical

structure of tables, and then examines models used for generation and recognition of tables.

2.1 Physical and Logical Structure of Tables

As with all entities sought after in document recognition, tables have physical and logical

structure[28, 29, 62]. For tables, physical structure describes where regions containing parts

of tables are located in an image or plain text file (e.g. Figure 6), while logical structure

defines the types of these regions and how they form a table. All regions of interest in a table

have both physical and logical structure. For example, the location of a line in a table image

is part of the physical structure of a table, while the type of a region (in this case, ‘line’)

is part of the logical structure of a table. Similarly, the intersection of two lines is defined

in logical structure, while the location of the intersection is defined using geometry (part of

physical structure).

We define the most abstract level of logical structure for tables to be the indexing scheme

from headers to cells located in the body of a table. This defines a relation describing a table,

but it may not be minimal (e.g. the table may repeat dimensions of a relation). Defining the

minimal relation underlying a table requires knowledge about the subject matter domain

5

A1−A2 B1−B2
C1−D1

C2 D2

A3 B3 C3 D3

A4 B4 C4 D4

A5 B5 C5 D5

A6 B6 C6 D6

Figure 4: Grid Describing the Location of Cells for the Table in Figure 3. Table grids are
formed by extending all separators to the border of a table. Here rows are represented by
numbers, and columns by letters. The table in Figure 3 has a ‘Manhattan’ layout, in which
all separators meet at right angles. For non-Manhattan layouts cells may not be rectangle-
shaped (and the table grid more complex as a result). Occasionally cells occupy more than
one location in the table grid: these are called spanning cells. The topmost cells in Figure 3
are all spanning cells, located at grid locations A1-A2, B1-B2 and C1-D1.

of the table, such as how dimensions are related, fixed ranges for particular dimensions, or

synonyms for dimension names. This is information that tables themselves do not provide:

their function is to visualize an indexing scheme for data in a relation, not to interpret the

relation in the data domain. As a result, we consider anything more abstract than the table’s

indexing structure (e.g. the minimal underlying relation) to be part of logical structure of

information in a table’s subject matter domain rather than part of the logical structure of

the table itself.

For a table encoding, the least abstract level of logical structure describes the type of the

smallest regions of interest. In an image this might be a connected component. For plain text

files, this might be be regions of adjacent non-whitespace character (connected components

of characters in the text file). For HTML files, this might be a tagged cell. At this level there

is no relational structure, only primitive regions with types.

Intermediate levels of logical structure describe the composition of smaller regions into larger

ones, and relate regions to one another. For example, a series of connected components may

be joined into a line (relating the connected components), which is found to intersect with

another line (relating the two lines). An important intermediate level of logical structure

describes cell adjacencies, or topology. Cell topology is often described using a table grid.

Table grids are formed by extending all line and whitespace cell separators to the edges of

a table region (see Figure 4). The grid allows indexing cell locations using a scheme similar

6

<TABLE RULES=ALL BORDER=1 CELLPADDING=5 ALIGN=CENTER>

<THEAD>

<TR>

<TD ROWSPAN=2>Journal</TD>

<TD ROWSPAN=2 ALIGN=CENTER>Full Name</TD>

<TD COLSPAN=2 ALIGN=CENTER>Details</TD>

</TR>

<TR>

<TD>Appears</TD>

<TD>Publisher</TD>

</TR>

</THEAD>

<TBODY>

<TR>

<TD>TPAMI</TD>

<TD>IEEE Transactions on Pattern Analysis

and Machine Intelligence</TD>

<TD>monthly</TD>

<TD>IEEE</TD>

</TR>

...

</TBODY>

</TABLE>

<P ALIGN=CENTER>

Source: from a listing of pattern recognition

journals provided online at

http://www.ph.tn.tudelft.nl/PRInfo/

</P>

Figure 5: Partial HTML Source Code for the Table in Figure 3. Note how ROWSPAN and
COLSPAN attributes are used to define cells that span rows and columns respectively, and
that the table boxhead (THEAD) and body (TBODY) regions are explicitly labelled. The
source of the table is labelled as a paragraph (P). This type of formatting rather than logical
structure description is common in practice, making automated retrieval and clustering tasks
for HTML tables difficult[24, 42, 91, 96].

to those in spreadsheets, in which columns and rows are enumerated. Depending on the

structure of a table, grid locations may be empty, or cells may span multiple grid locations

as in Figure 4.

The physical structure of a table can be encoded in a text or image file, while logical structure

may be encoded using a markup language such as HTML (see Figure 5). The tags in the

markup language describe data types and relations (i.e. they define a graph on labelled data).

In HTML, tags can be used to define the table grid (contents and relative positions of cells),

types of separator (lines vs. whitespace), and the location of the body, header (boxhead),

and footer areas. HTML does not encode the stub location, indexing structure, or underlying

relation of a table.

In practice, tables encoded in HTML often do not use the header and footer tags, and use

tags that are not part of the table tag set (for an example, see Figure 5). Also, the table

environment is often used to layout lists and matrices of data in a grid, with no indexing

structure[42, 91].

7

Table I. Available Document Recognition Software

Source Packages Web Site Note

AABBYY FineReader http://www.abbyy.com Commercial

ScanSoft OmniPage http://www.scansoft.com Commercial
OmniForm
TextBridge

ExperVision TypeReader http://www.expervision.com Commercial:
WebOCR WebOCR on-line

service is free

CharacTell Simple OCR http://www.simpleocr.com Commercial

Musitek SmartScore http://www.musitek.com Commercial Music
Recognition,
Scoring

Michael D. Form-Based http://www.itl.nist.gov/ Free, with source code
Garris (NIST) Handprint iaui/894.03/databases/ Unrestricted Use.

Rec. Sys. defs/nist_ocr.html Large training sets

Donato Malerba Wisdom++ http://www.di.uniba.it/ Free for research
et. al. ~malerba/wisdom++/ and teaching purposes

R. Karpischek Clara OCR http://www.claraocr.org GPL*
et. al.

J. Schulenburg JOCR http://jocr.sourceforge.net GPL*
et. al.

Klaas Freitag Kooka http://www.kde.org/apps/kooka GPL*, Scanning
and OCR interface

*GPL: Freely available under GNU General Public License

Figure 6: A Table Describing Available Document Recognition Software. This table is from
an ASCII text file, and is unruled. Note the title and the footnote below the table; the
footnote is referenced using asterisks in the rightmost column of the table. Together, the title
and footnote span all the gaps between columns. This type of arrangement complicates the
detection of separators in projection profiles (horizontal and vertical histograms of foreground
pixels/characters[6, 15, 27, 32, 45, 50, 54, 78, 86, 98]).

8

2.2 A Table Model for Generation: Wang’s Model

The most complete table model in the literature was designed to support generating table

images from logical structure descriptions by Wang[89]. Wang’s model separates table struc-

ture into three parts: an abstract indexing relation, a topology defining the placement and

ordering of dimensions within the boxhead, stub, or both regions, and formatting attributes

which include fonts, separator types, and layout constraints. Formatting attributes are as-

sociated with logical structures: dimensions and their elements, table regions (e.g. body or

stub), and blocks of cells. In Wang’s scheme, the table grid and cell toplogy (cell adjacencies)

are defined by a combination of the topology on dimensions and formatting rules.

Wang’s model is appealing because it is reasonably simple and separates concerns cleanly,

with editing driven by logical structure rather than blocks of cells, as in many conventional

table editing tools (e.g. spreadsheets). In Wang’s scheme what we have called logical struc-

ture is separated into layout, presentation, and logical classes (see Section 4.1 of Wang’s

thesis[89]). Wang’s model does not describe footnotes or other text associated with a ta-

ble (e.g. titles or captions). Stub heads are assumed to be empty, and headers are assumed

to be located only in the boxhead and stub of the table. It is also not designed to handle

nested tables, in which cell contents are themselves tables; however, this type of table is

fairly unusual.

2.3 Table Models for Recognition

In the literature, table models for recognition must support two tasks: the detection of

tables, and the decomposition of table regions into logical structure descriptions. They tend

to be more complex than generative models, because they must define and relate additional

structures for recovering the components of generative models. Figure 7 presents a number

of these additional structures, such as connected components and line intersections. The

usefulness of a table model for recognition in a set of documents is determined by the

proportion of tables described by the model, the degree to which the model excludes other

types of data (e.g machine drawings), and how reliably the objects and relations of the model

can be inferred. The efficacy of a model is difficult to assess in advance of doing a performance

9

Primitive Structures
Run lengths[15, 16, 50, 54, 95]
Connected components[1, 33, 34, 47, 50, 54, 80, 95, 98]
Separators

Lines[15, 16, 46, 50, 72]
Whitespace [22, 27, 36, 41, 49, 65, 86, 92, 98]

Intersections
Of separators[4, 5, 15, 50, 78, 84, 87, 94]
Of lines and text[6, 34, 97]

Characters
Provided in text or markup files[21, 24, 36, 47, 65, 73, 85]
From Optical Character Recognition[7, 49, 57, 69, 80, 86]

Text lines[46, 67, 79, 80]
Other Symbols

Arrow heads (to repeat cell values[6])
X’s (to cancel cells[4])

Table-Specific Structures
Table grid[5, 22, 27, 33, 45, 54, 86, 98]
Cells

Multi-line cells[27, 38, 44, 65]
Spanning cells[24, 69, 86]
Cell Topology (usually rows and columns of cells[21, 27, 33, 38, 45, 65, 78, 85, 98])

Table regions: boxhead, stub, and body[38, 43, 73, 96]
Captions, titles, sources, footnotes and other text associated with tables[20, 69, 73, 86]
Tables (for table detection[14, 24, 36, 46, 48, 49, 54, 65, 78, 84, 91, 93])
Indexing structure

Indexing relation for tables[21, 24, 85, 96]
Entry structure in tables of contents[7, 9, 81, 82]

Figure 7: Types of Structures in Table Models for Recognition. For table structure recogni-
tion, the most common outputs are the table grid, cell topology, and table regions (body,
stub, and boxhead). Less commonly, some papers go further and encode the indexing
relation[21, 24, 85, 96] or entry structure in tables of contents[7, 9, 81, 82]. Multi-line cells
contain mutliple text lines.

evaluation (see Section 6). Usually table models are designed informally by trying to describe

the tables in a set of documents (e.g. as was done for Wang’s model[89]).

Only a small number of models for recognition have been described explicitly in the literature[21,

40, 69]. These models are less complete than Wang’s. More commonly the structures, rela-

tions, and assumptions of a table model for recognition are determined by the sequence of

observations, transformations, and inferences used by a table recognizer. As an example,

from operations that locate column separators at gaps of a vertical projection, we learn the

recognition model has a notion of horizontally adjacent columns, where columns are sepa-

rated by uninterrupted whitespace gaps; this implicit model cannot describe the table shown

in Figure 6. In many papers the description of operations, and thus the reader’s view of the

10

table model, is partial.

A table model may be static, where all parameters are fixed before run-time, or adaptive,

where parameters are altered at run-time based on input data. Figure 8 lists a number of

static and adaptive parameters of table models. Some adaptive parameters used in table

recognition are fairly sophisticated, including line grammars for tables of contents[7], and

regular-expressions describing the types of cells in a table[69, 78]. In the literature, model

parameters have been set both manually and using machine learning methods[14, 70]. Pa-

rameters have included encodings of domain knowledge such a bigrams[41] and ontologies[85]

(graph-based knowledge encodings); these encodings are used in the analysis of cell content.

Thresholds, tolerances, domain knowledge encodings, and other parameters constrain a table

model, and consequently affect what may be inferred by a table recognizer. In this way, they

specify a set of assumptions about table location, structure, and content.

As for any other pattern recognition model, there are a number of issues in designing a

table model including the ‘curse of dimensionality’ (the required training sample size grow-

ing exponentially as the number of parameters increases) and the complexity of rule-based

systems. Perlovsky has provided a brief and informative history of these two problems[68].

3 Observations

Observations measure and collect the data used for decision making in a table recognizer.

As shown in Figure 1, observations may be made on any available data; the input docu-

ment, table model, input parameters, existing hypotheses, or the current set of observations.

Figure 8 lists a number of observations made by table recognition systems. Observations

may be categorized by the type of data on which an observation is made: images and text

files (physical structure), descriptions of table structure (logical structure), sets of existing

observations (descriptive statistics), or parameters.

For physical structure, observations include geometry, histograms and textures. Geometric

observations include perimeter, representative points (e.g. centroid), area, height, width,

11

Physical Structure

Geometry
Area
Height
Width
Aspect ratio (height:width)
Angle (e.g. of a line)
Skew estimation
From skew of detected lines[53]
From bounding boxes[46]

Docstrum: angle, distance between connected
components[67]

Overlap of regions (e.g. table regions[14])
Region perimeter[34, 78]
Representative point
Centroid[67]
Top-left corner[94]
Text baseline y-position[33]

Distance between points (e.g. between
centroids[67])

Histograms (Projection Profiles)
Projected image pixels[16, 63, 79]
Projected bounding boxes[25, 32, 45]
Boxes projected as symmetric triangles [98]
Boxes projected as ‘M’ shapes of constant

area[49]
Weighted projections (e.g. by height[27, 98])

Texture
Value transition count (cross-counts)[50, 86]
Pixel density[13]
Character density[21]

Parameters

Static or Adaptive
Probability (e.g. for table detection[93])
Thresholds (adaptive examples: [32, 46, 98])
Tolerances (e.g. used to tolerate noise in X-Y

cutting[13])
Weights (e.g. for linear combinations[48])

Adaptive
Line grammar (e.g. for table of contents[7])
Regular expressions for cell contents[69, 78]

Encoded Domain Knowledge (Static)
Word bigrams[41]
Ontologies[85]

Logical Structure

Table structures (see Figure 7)
Edit distance[10]

Deriving reg. expressions for strings[69, 78]
Cell block cohesion measures[43, 85, 91]
Graphs

Line intersections[87]
Form structure[12]
Table indexing structure[22, 39]

Table Syntax (as grammars; see Figure 12)

Descriptive Statistics

Cardinality (counting)
Probability (e.g. computed from a sample)
Weighted Linear Combinations of Observations

‘Columness’ of a region[48]
‘Tableness’ of a region[93]

Comparisons
Difference (e.g. between heights[85])
Derivative (e.g. of histograms[16, 79])
Inner (‘dot’) product and cosine of vectors [80,

91, 96]
Correlation (e.g. of text line spacings[49])
Word uniqueness[91, 96]

Summary Statistics
Range
Median
Mean
Variance/standard deviation[46]
Periodicity
In histograms[79]
In column, row structure[91]
Line/string periodicity[73]

Figure 8: Observations in the Table Recognition Literature. Observations are classified based
on whether they are taken from an image or text file containing a table (physical structure),
from a description of table structure and/or content (logical structure), from a set of existing
observations (descriptive statistics), or from system parameters. Static parameters are set
before execution; adaptive parameters are set at run-time.

12

aspect ratio and angle. They also include distances, angles, and areas of overlap between

two regions. Histograms are often observed when locating text lines and to define the table

grid. Textural features include cross-counts (a transition count for a line of pixels in a binary

image or characters in a text file) and density (proportion of ‘on’ to ‘off’ pixels in a binary

image, or character to blank cells in a text file). Texture metrics have been used to classify

regions[50, 86].

For logical structure, observations made include table structures, edit distance, cell cohesion

measures, graphs, and table syntax. The edit distance[10] from logical structure description A

to logical structure description B is a weighted linear combination of the number of insertions,

deletions, and substitutions required to transform A to B. In the table recognition literature,

edit distance has been used to derive regular expression ‘types’ for columns[69, 78] and

in performance evaluation (see Section 6). Cell cohesion measures[43, 85, 91] are used to

measure whether cells exhibit dimension name and element relationships (e.g. in a column

of cells[43, 85]), and to determine the consistency of cell properties in a block of cells[91].

For descriptive statistics, observations include cardinality (counting), probabilities, weighted

linear combinations of observations, comparisons, and summary statistics. Variance and stan-

dard deviation have been employed to define tolerances and thresholds[46]. In addition, pe-

riodicity (spatial regularities or intervals) has been used to classify primitive text regions[79]

and for detecting regularities in row and column structure (e.g. in HTML[91] and plain

text[73]).

Parameters of table recognizers were discussed in Section 2. Here we will elaborate further on

the use of domain knowledge observations in table recognition, as this is a promising approach

in table recognition. Hurst has provided a number examples in which layout information

alone is insufficient for defining table grids, cell scopes, and cell topology[41]; the analysis

of table content relative to a domain model is required in these examples. To address this,

he and Nasukawa[44] proposed improving cell segmentation by constraining detected text

continuations using word bigrams. The constraints afforded by these bigrams appear to

improve cell segmentation and topology analysis[41]. In Section 5.2 we describe a system by

Tubbs and Embley using the correspondence of cell contents to relationships and concepts

13

in an ontology for detecting header nesting and factoring, and in computing cell cohesion

measures[85].

4 Transformations

Transformations restructure existing observations to emphasize features of a data set, to

making subsequent observations easier or more reliable. Figure 9 lists transformations used

in the table recognition literature. As we did for observations, we classify transformations

by the type of data to which they are applied: physical structure, logical structure, or to

descriptive statistics.

Physical structure transformations include the Hough Transform[30], which is used to ap-

proximate parameters of geometric shapes. The Hough Transform is commonly applied to

table images in order to support the detection of table lines. Affine transformations[77] are

also commonly used, in particular rotations and shearing transforms are applied to correct

rotation and shearing in scanned images[1, 66, 67].

Other physical structure transformations include the image transformations that are of-

ten referred to as ‘preprocessing’: compression, resampling, binarization, and mathematical

morphology. Resampling is used to provide low resolution versions of an input image, as

researchers have found that this provides a useful alternate view of the document[34, 79].

Mathematical morphology[30] is concerned with set-theoretic operations defining how in-

dexed sets (structuring elements) alter elements of other indexed sets. In the table recog-

nition literature, morphological operations have been applied to both binary images and to

text files[47]. Structuring elements used in table recognition are usually horizontal and ver-

tical bars, used to close gaps. These types of structuring elements are used in the run-length

smoothing algorithm (RLSA[95]), to thin objects[45], and to detect corners[87].

Logical structure transformations include tree and graph transformations, which have been

used to merge and split regions (e.g. into tables[76]) and correct errors in table of contents

entries[7]. Other logical structure transformations include filtering small objects assumed to

14

Physical Structure

Image Binarization (e.g.[27, 79])
Image compression

Run-length encoding[95]
Block adjacency graph[97]

Image resampling
Subsampling[15, 34]
Supersampling[67]
Quadtree[79]

Hough transform[30] (e.g. for locating lines)
Affine transformations: rotation, shearing, trans-

lation and scaling[77], (e.g. used for de-
skewing an image[46])

Interpolation to recover parts of characters inter-
sected by lines[97]

Mathematical Morphology[30]
RLSA (Run-length smoothing algorithm[95])
Dilations and closings
In images[66, 6]
In text files[47]
For joining lines[97]

Thinning[45]
Edge detection[87, 94]

Descriptive Statistics

Histogram smoothing[79]
Histogram thresholding

Logical Structure

Merging/splitting of regions
Cells[43]
Tables[78, 96]
Splitting region at detected separators[54]

Graph/tree transformations
To correct structural errors[7]
Join regions into a table region[76]

Filtering
Small regions for noise reduction[52, 66, 80]
Textures, images and half-tones[80]

Insertion of table lines[33, 54]
Produce boxes from line intersections [3, 87]
Sorting and Indexing

Sorting (e.g. boxes by geometric attributes[8])
Indexing (e.g. of cells[22, 45])

Translation
HTML to character matrix[24, 91]
Map strings to regular expressions[69]
Transform tokens of a single class to a uniform

representation ([65, 69])
Encoding recognized form data[12, 97]
Indexing relation of a table[22]

Figure 9: Transformations in the Table Recognition Literature. Transformations are classified
based on whether they are applied to an image or text file containing a table (physical struc-
ture), to a description of table structure and/or content (logical structure), or to descriptive
statistics.

be noise[52, 66, 80], producing shapes from point lists[3, 87], ordering and indexing objects,

and translation to alternate representations (e.g. from HTML to plain text[24, 91]). Green

and Krishnamoorthy[22] have provided an elegant translation from recognized table structure

to a table’s indexing relation using templates.

We quickly note a pair of transformations modifying descriptive statistics. Histogram smoothing[79]

and thresholding have been used to reduce variance when trying to locate text lines and sep-

arators in projections.

Some of the transformations described in this section produce implicit inferences. As an

example, Handley[28] has pointed out that the morphological operations of the Run-Length

Smoothing Algorithm[95] concurrently classify regions as foreground or background. Image

15

binarization and noise filtering have the same side-effects. Many systems quietly assume

that the regions output by these algorithms are valid foreground regions; a set of hypotheses

about foreground regions are immediately accepted as valid.

5 Inferences

5.1 Classifiers, Segmenters, and Parsers

Inferences decide whether or how a table model can be fit a document, through the gener-

ation and testing of hypotheses. More specifically, inferences decide whether physical and

logical structures of the table model exist in a document using data observed from the input

document, input parameters, table model, transformed observations, and table hypotheses

(as shown in Figure 1). As seen in Figures 10, 11, and 12, a large variety of inferencing

techniques have be used in table recognition. Comparing inferences, even for the same target

structure, is often difficult because different observations or decision techniques are used.

In studying inferences in table recognition, we found the following categorization of tech-

niques to be useful.

• Classifiers: assign structure and relation types in the table model to data

• Segmenters: determine the existence and scope of a type of table model structure in data

• Parsers: produce graphs on structures according to table syntax, defined in the table model

This categorization separates the concepts of typing, locating, and relating structures (de-

termined by classifiers, segmenters, and parsers, respectively). These inferencing classes are

interdependent, however. The cyclic dependence between classifiers and segmenters has been

well documented[11]. Parsers use classification and segmentation to define inputs for anal-

ysis, and in producing a parse (see Figure 12). In the other direction, parse results can be

used to provide context in segmentation and classification.

Space does not permit a detailed discussion of the inferencing methods in the literature.

Instead we will briefly outline classifies, segmenters, and parsers used in table recognition as

summarized in Figures 10, 11, and 12.

16

Decision Tree

Single Dimension
Thresholding (e.g. threshold a ‘columness’ fea-

ture to locate columns[48])
Priority of separators (e.g. table lines by

thickness[22])
Using area to classify noise vs. signal[15, 52,

66, 72]
Character class (e.g. alphabetic, non-

alphabetic, other[65])
Multiple Dimensions

Connected components
Defining[30]
Classifying[33, 45, 46, 50]

Document region classification[46, 50, 90]
C4.5 decision tree induction[74] (for table

detection[65])
Word token sets[82]
Table/non-table classification[91]
Text orientation (vertical vs. horizontal[50])
Chain code line segment type[53]

Nearest Neighbour

k-nn (e.g. for defining clusters[67])
Weighted k-nn (e.g. for table detection[91])

Neural Network

Optical character recognition[80]
Logo recognition[12]

Syntactic

String matching (e.g. HTML cell types[91])
Regular expressions (e.g. assigning types to text

lines[36, 65, 86])
Part of speech tagging (e.g. to classify roles of

words in tables of contents[7])

Statistical

Bayesian Classifier (‘Naive Bayes’)
Table detection[91]
Functional class of text block (e.g. author, title

for table of contents [81])
Bayesian network (e.g. assigning labels to regions

in tables of contents[81])
Probabilistic relaxation[77] (assigning labels to

words in tables of contents[9])

Figure 10: Classifiers: Inferences Used to Assign Structure and Relation Types. Classification
techniques used in table recognition include decision tree, nearest neighbour, neural network,
syntactic, and statistical methods. Decision trees are by far the most common technique.

Figure 10 separates classifiers into decision tree, nearest neighbour, neural network, syntactic

and statistical methods. We take a very general view of classification in which assigning

any type to data is taken to be classification; this includes identifying an image region

as being a connected component or not, for example. Decision trees are by far the most

common classification method used in table recognition. An alternate organization for these

classification methods is provided by the types they assign (which correspond to table model

structures and relations). This type of organization can be seen in Figure 7, where classes of

structures used in table models are listed.

Figure 11 summarizes segmenters, which search data for table model components using a bi-

nary classifier. The binary classifier tests the presence or absence of a table model component

in a data region, while the objective function of the search controls the scope of segmented

regions. As a simple example, consider a connected component segmenter; a simple clas-

17

Clustering
Connected components

Creation (e.g. for adjacent pixels[30], for adjacent word boxes[47])
Clustering connected components[46]

Tables by content[96]
K-means clustering (of projection histogram groups[98])
Hierarchical clustering of regions by distance[36]
Transitive closure (e.g. of a proximity relation [47])

Partitioning
Using breadth first search (e.g. to segment columns[37])
Using best-first search (e.g. to recover body, stub, and boxhead[43])
Table detection

Using dynamic programming[36]
Using best-first search[93]
Using simplex[64] algorithm[14]
Using iterative decreasing step[14]

Recursive Partitioning
X-Y cut[63]: alternating horizontal and vertical partitions at projection histogram minima[22]
Modified X-Y cuts, using histogram minima and lines[13]
Recursive line partitioning (e.g. by ‘best’ separating line[50], by line separator priority[22])

Exact Matching
Splitting text columns into rows at blank lines[47, 65]

Figure 11: Segmenters: Inferences Used to Locate Structures. Segmenters employ a binary
classifier and a search function to locate table model components. Target regions matched by
the classifier that also satisfy the objective function of the search are clustered or partitioned
within the data set.

sification defines connected components, while the objective function of the search insures

only the largest connected components are actually segmented. Figure 11 categorizes seg-

mentation in table recognition by whether methods cluster or partition data. Clustering has

been used to set parameters adaptively using K-mean clustering[98] and to cluster regions

hierarchically based on distance[37]. We include closure on relations as a type of clustering,

for example of a proximity relation[47]. Yoshida et. al.[96] have presented a technique for

clustering HTML tables in the world wide web, producing meta-tables.

Some partitioning segmentations are very simple, such as when rows are segmented at blank

lines in text files[47, 65]. Others are more sophisticated, such as segmenters used in table

detection. An important differentiating feature in table detection methods is the type of

search used. These have included best first search[93], dynamic programming[36], the simplex

algorithm[14], and Cesarini et. al.’s iterative decreasing step[14]. The most commonly used

recursive partitioning methods in table recognition are variants of the X-Y cut algorithm

18

Hidden Markov Models (Stochastic Regular Languages)
Maximizing region adjacency probabilities[90]

Attributed Context-Free Grammars
Tables in images (with parse control-flow directives: [18])
Table form box structure[3, 8, 94]
Form structure[19]
Using input tokens with multiple types to parse tables of contents[82]
For tables in HTML files[91]
For page segmentation[52, 88]

Graph Grammars
Table form cell composition[2]
Table structure from word boxes[76]

Figure 12: Parsers: Inferences Used to Relate Structures. Parsers produce graphs describing
the logical structure of table model components. Here parsing techniques are categorized by
the type of grammar encoding logical structure syntax: hidden Markov models, attributed
context-free grammars, and graph grammars. In the process of defining relational structure,
parsers both segment and classify data. Consider the simple production rule A → BC.
Applying this rule in a parse clusters type ‘B’ and ‘C’ elements in the specified order to
produce a type ‘A’ object.

of Nagy and Seth[63]. Recursive partitioning methods actually produce a parse as well as

segment regions, as the result describes a hierarchy of regions which may be used to determine

the table grid and cell topology, for example[22].

Parsers used in the literature are summarized in Figure 12. Parsers produce graphs describing

logical structure according to table syntax defined in a grammar. The grammars used in

parsing are part of the table model. Parsers have been used to apply probabilistic constraints

on region types[90], for table detection[19, 76], to define page grammars for X-Y cut-based

analysis[52, 88], and to parse entry structure in tables of contents[82]. The parsing technique

proposed by Takasu et. al.[82] is interesting, because input tokens are initially provided with

sets of possible types assigned by a decision tree which the parser then constrains to produce

a valid interpretation. In the final interpretation, tokens are assigned a single type.

A small number of techniques for automatically inducing grammars from data have been

described in the literature. Takasu et. al.[83] have described a method for inducing a grammar

for tables of contents from labelled data. Adaptive methods have been used to define regular

expressions describing the data types of cell contents[69, 78], and a context-free grammar of

19

table of contents entry structure[7].

5.2 Inference Sequencing

Table recognizers are frequently required to make inferences based on hypotheses produced

by other inferences. For example, many systems will generate hypotheses of line locations.

Inferring the location of line intersections needs to assume temporarily that these line hy-

potheses are valid. At a later point these line hypotheses may be found to be invalid by

another inference. In many cases however, once hypotheses are accepted, they are not recon-

sidered. Rus and Subramanian have proposed an elegant graph-based notation for describing

this type of architecture without feedback[78].

Tubbs and Embley[85] have proposed an alternate architecture for recognizing genealogical

tables, making use of an ontology describing inheritance. The role of the ontology may be

understood as a parameter of their table model (see Section 3). Input to the system describes

cell locations and their text contents. Potentially valid hypotheses regarding cell topology,

entry structure, and properties of cell contents defined using the ontology (e.g. dimension

name and element relationships) are placed in matrices. An iterative control structure is

then used to alter confidence weights associated with each hypothesis using an ordered rule

set. Iteration stops when a fixed point is reached for hypothesis weights, or after a fixed

number of iterations. Decision rules then determine which hypotheses to accept, and how

these accepted hypotheses are integrated into an interpretation of entry structure. In this

scheme hypotheses dynamically affect one another through feedback.

Commonly in the literature an ordered sequence of classifiers and segmenters is used to infer

instances of table model structures. As an example, consider a method in which table cells are

segmented, and then columns of cells are segmented. This process can be considered a simple

form of parsing, in which a hierarchy defining the composition of objects is defined. For the

previous example, the composition of the column is described by the set of segmented cells.

X-Y cutting[63] is another example, where the recursive segmentation of regions produces a

tree.

20

One advantage of explicit table models is that their syntax may be encoded in a gram-

mar. How the grammar is applied for table detection or structure recognition can then be

controlled using different parsing algorithms, which result in different operation sequences.

This ability to specify search strategy as a table recognizer parameter is useful both for

characterizing and comparing methods.

6 Performance Evaluation

After the design of a table recognizer is complete, the designer will have some questions.

How fast is the system? How well does the table model fit tables in the intended domain

(e.g. images of technical articles, or HTML pages on the world wide web)? How reliable are

the inferences made by the system, or put differently, what are the type and frequency of

errors made by the system? In this section we describe the methods and metrics used in

performance evaluation of table recognition, which are then used to address the last two

questions.

In order to train or evaluate a table recognizer the logical and/or physical structure of

tables in documents must be encoded; this encoding is referred to as ground truth. It is

produced using another table model, which must be able to describe the outputs of the table

recognizer[35]. Ground truth may be produced manually with interactive tools[39, 75] or by

automatically generating document sets with ground truth[56, 71, 92]. Automatic generation

permits a degree of experimental control not possible with a random document sample, but

then correspondence to real document sets myst be addressed. Whether real or generated

automatically, many tables have ambiguities, permitting mutliple interpretations[36, 39]. An

open problem is how, or whether, to encode ground truth for these documents[35, 57].

In the table recognition literature three methods have been used to separate available docu-

ments with ground truth into training and testing sets: resubstitution, in which all documents

are used in training and testing; the ‘circuit-training’ or leave-one-out’ method, in which each

document is tested exactly once, with remaining documents used for training each time, or

21

by randomly assigning documents to the training and testing sets. Resubstitution is seldom

used as it produces positively biased results[30].

Comparing systems in the literature is difficult, because table models are usually not ex-

plicitly defined and differ significantly between systems, there are no available benchmark

data sets with ground truth, and systems are seldom described in enough detail to permit

replication. However, one trend appears to be that table recognizers using detailed, narrowly-

defined models to recover tables in well-characterized document sets appear to perform their

intended tasks best (for a good example of this, see Shamillian et. al.[80]). This is explained

in part by substantial a priori knowledge permitting strong, well-grounded assumptions to

be incorporated into the table model. This reduces the number of table model parameters

necessary, making both training and understanding the behaviour of the table recognizer

simpler.

In the remainder of this section we describe the performance metrics used in table detection

and structure recognition, and mention some experimental design issues.

6.1 Recall and Precision

For classification, given a class X and a set of input patterns with associated ground-truth,

recall is the percentage of type X input patterns classified correctly, and precision is the

percentage of input patterns assigned type X correctly. Over the set of all possible classes,

recall and precision are equivalent. For individual classes, the number of correct class X

classifications need not match the number of items correctly assigned class X. To see this,

consider the case where a binary classifier (returning X or Y) always assigns class X.

For evaluating the segmentation of regions (e.g. for table detection), the splitting and merging

of ground truth regions needs to be taken into account[39, 56]. To accommodate this, modified

recall and precision metrics that make use of the area of overlap between detected and ground

truth regions have been devised[14, 48]. The area of overlap between regions in recognizer

output and regions in ground truth are then used as weights in modified recall and precision

metrics that take merging and splitting into account.

22

Precision and recall are sometimes combined into a single ‘F-measure.’ In the table recogni-

tion literature this is non-standard, as both the arithmetic and harmonic mean of precision

and recall have been called an ‘F-measure’[24, 85]. The harmonic mean of precision (P) and

recall (R) is defined as

H(R, P) =
2RP

R + P

The two metrics have different biases. For example, given the sum of recall and precision

T = R+P , the maximum harmonic mean value is obtained when R = P = T/2. In contrast,

for the arithmetic mean the resulting value depends only on the sum of recall and precision,

and not on their relative sizes.

6.2 Edit Distance and Graph Probing

Edit distance (see Section 3) has been used to compare detected tables to ground-truth

(taking false positives, false negatives, merges, and splits into account[36]). It has also been

used in table structure recognition to compare graphs describing the logical structure of

tables[60]. Edit distance has some associated problems: the minimal editing sequence is not

necessarily unique, it can be computationally intensive, and appropriately setting the weights

of operations is difficult. In the literature the operation weights are always set to one.

To address these problems a new metric called table agreement has been proposed[39]. Agree-

ment is computed by automatically generating queries about the number, content, topology,

and indexing structure of cells in logical table structure encodings for recognizer output and

ground truth. Queries are verified or contradicted by searching the other table encoding;

agreement is defined as the percentage of verified queries. This process of generating and

verifying queries from graphs is called graph probing[60].

6.3 Experimental Design

Evaluation in table recognition is still maturing. Performance evaluations are usually made

from final outputs, ignoring individual inferences. As a result, the effects of individual deci-

sions are often confounded (inseparable) in the evaluation. Wang and Hu have made a step

23

forward in this regard. They performed an experiment making use of a fixed classification

method (an induced decision tree) while varying the set of observations used for training the

classifier[91]. In their design, the inference method and observations are clearly separated

into independent factors.

A number of other experimental design issues remain in the area. These include a need

for better sampling[57] and comparisons of experimental conditions[61]. A metric worth

considering for the robust comparison of conditions is the Analysis of Variance (ANOVA[31]).

7 Conclusion

We have presented the table recognition literature from the viewpoint that table recogniz-

ers may be understood as sequences of decisions (inferences) supported by observations and

transformations of available data. These decisions are made relative to a table model de-

scribing the location and composition of tables in a set of documents. Figure 7 summarizes

the structures used in table models for recognition. Observations, transformations, and infer-

ences made in the table recognition literature are summarized in Figures 8, 9, 10, 11, and 12.

In Section 6 we describe performance evaluation methods for determining the sufficiency of a

table recognizer for recovering and/or analyzing tables in a set of documents. We have tried

in our discussion to point out various assumptions inherent or implied in different operations

and sequences of operations in the literature.

As pointed out in Section 6, it appears at present that simple, domain-specific table models

have more promise than complex, general models. It may be worth studying whether com-

binations of table recognizers with simple models yield improvements in performance over

the current state-of-the-art for large, heterogenous document sets such as technical articles.

Other avenues for future work include extending the proposed table models of Wang[89]

and others, further exploring content-based methods for recognition (including cell cohesion

metrics and the use of domain knowledge), improving experimental design and evaluation

techniques at both the level of individual decisions and whole systems, defining corpii of

24

ground-truth tables for use in the community, and defining new observations, transforma-

tions, and inferences for use in table recognition.

Acknowledgement

The authors wish to thank George Nagy for providing references and helpful discussion,

Bob Tennent for his comments on document semantics, and the anonymous referees for

suggestions which aided in substantially improving this paper. This research was supported

by the Natural Sciences and Engineering Research Council of Canada.

References

[1]A.A. Abu-Tarif. Table processing and understanding. Master’s thesis, Rensselaer Poly-

technic Institute, 1998.

[2]A. Amano and N. Asada. Complex table form analysis using graph grammar. In LNCS,

volume 2423, pages 283–386. Springer-Verlag, 2002.

[3]A. Amano, N. Asada, T. Motoyama, T. Sumiyoshi, and K. Suzuki. Table form document

synthesis by grammar-based structure analysis. In Proc. Sixth Int’l Conf. Document

Analysis and Recognition, pages 533–537, Seattle, Washington, 2001.

[4]J.F. Arias, A. Chhabra, and V. Misra. Efficient interpretation of tabular documents. In

Proc. Thirteenth Int’l Conf. Pattern Recognition, pages 681–685, 1996.

[5]J.F. Arias, A. Chhabra, and V. Misra. Interpreting and representing tabular documents.

In Proc. Computer Vision and Pattern Recognition 1996, pages 600–605, 1996.

[6]S. Balasubramanian, S. Chandran, J. Arias, and R. Kasturi. Information extraction from

tabular drawings. In Proc. Document Recognition I, San Jose, CA, June 1994.

[7]A. Beläıd. Recognition of table of contents for electronic library consulting. Int’l J.

Document Analysis and Recognition, 4:35–45, 2001.

25

[8]L. Bing, J. Zao, and X. Hong. New method for logical structure extraction of form

document image. In Proc. Document Recognition and Retrieval VI, pages 183–193,

January 1999.

[9]F.L. Bourgeois, H. Emptoz, and S.S. Bensafi. Document understanding using probabilis-

tic relaxation: Applciation on tables of contents of periodicals. In Proc. Sixth Int’l Conf.

Document Analysis and Recognition, pages 508–512, Seattle, Washington, 2001.

[10]H. Bunke. Structural and syntactic pattern recognition. In C. H. Chen, L. F. Pau, and

P.S.P. Wang, editors, Handbook of Pattern Recognition and Computer Vision, pages

163–209. World Scientific, 1993.

[11]R.G. Casey and E. Lecolinet. A survey of methods and strategies in character segmenta-

tion. IEEE Trans. Pattern Analysis and Machine Intelligence, 18(7):690–706, July 1996.

[12]F. Cesarini, M. Gori, S. Marinai, and G. Soda. INFORMys: A flexible invoice-like form-

reader system. IEEE Trans. Pattern Analysis and Machine Intelligence, 20(7):730–745,

July 1998.

[13]F. Cesarini, M. Gori, S. Marinai, and G. Soda. Structured document segmentation and

representation by the modified X-Y tree. In Proc. Fifth Int’l Conf. Document Analysis

and Recognition, pages 563–566, September 1999.

[14]F. Cesarini, S. Marinai, L. Sarti, and G. Soga. Trainable table location in document

images. In Proc. Sixteenth Int’l Conf. Pattern Recognition, Québec City, Canada, 2002.

[15]S. Chandran and R. Kasturi. Structural recognition of tabulated data. In Proc. Second

Int’l Conf. Document Analysis and Recognition, pages 516–519, Tsukuba Science City,

Japan, 1993.

[16]A.K. Chhabra, V. Misra, and J. Arias. Detection of horizontal lines in noisy run length

encoded images: the FAST method. In LNCS, volume 1072. Springer-Verlag, 1996.

[17]R.A. Coll, J.H. Coll, and G. Thakur. Graphs and tables: a four-factor experiment. Comm.

ACM, 37(4):76–86, April 1994.

[18]B. Coüasnon. DMOS: A generic document recognition method, application to an auto-

matic generator of musical scores, mathematical formulae and table recognition systems.

In Proc. Sixth Int’l Conf. Document Analysis and Recognition, pages 215–220, Seattle,

26

Washington, 2001.

[19]B. Coüasnon and L. Pasquer. A real-world evaluation of a generic document recogni-

tion method applied to a military form of the 19th century. In Proc. Sixth Int’l Conf.

Document Analysis and Recognition, pages 779–783, Seattle,Washington, 2001.

[20]S. Douglas and M. Hurst. Layout and language: Lists and tables in technical documents.

In Proc. ACL SIGPARSE Workshop on Punctuation in Computational Linguistics, pages

19–24, 1996.

[21]S. Douglas, M. Hurst, and D. Quinn. Using natural language processing for identifying

and interpreting tables in plain text. In Proc. Fourth Ann. Symp. Document Analysis

and Information Retrieval, pages 535–546, Las Vegas, Nevada, 1995.

[22]E. Green and M. Krishnamoorthy. Model-based analysis of printed tables. In LNCS,

volume 1072, pages 80–91. Springer-Verlag, 1996.

[23]J. Grossman, editor. Chicago Manual of Style, chapter 12 (Tables). University of Chicago

Press, 14th edition, 1993.

[24]S. Tsai H. Chen and J. Tsai. Mining tables from large scale HTML texts. In Proc.

Eighteenth Int. Conf. Computational Linguistics, Saarbrucken, Germany, 2000.

[25]J. Ha, R.M. Haralick, and I.T. Phillips. Recursive X-Y cut using bounding boxes of

connected components. In Proc. Third Int’l Conf. Document Analysis and Recognition,

pages 952–955, 1995.

[26]R. Hall. Handbook of Tabular Presentation. The Ronald Press Company, New York,

NY, 1943.

[27]J. C. Handley. Table analysis for multi-line cell identification. In Proc. Document Recog-

nition and Retrieval VII, pages 34–43, 2001.

[28]J.C. Handley. Electronic Imaging Technology, chapter 8 (Document Recognition). SPIE

Optical Engineering Press, 1999.

[29]R.M. Haralick. Document image understanding: Geometric and logical layout. In Proc.

Computer Vision and Pattern Recognition 1994, pages 385–390, 1994.

[30]R.M. Haralick and L.G. Shapiro. Computer and Robot Vision (2 vols). Addison-Wesley,

Reading, MA, 1992.

27

[31]K. Hinkelmann and O. Kempthorne. Design and Analysis of Experiments: Introduction

to Experimental Design, volume 1. John Wiley and Sons Inc., New York, 1994.

[32]Y. Hirayama. A block segmentation method for document images with complicated

column structures. In Proc. Int’l. Conf. Document Analysis and Recognition, pages 91–

94, 1993.

[33]Y. Hirayama. A method for table structure analysis using DP matching. In Proc. Third

Int’l Conf. Document Analysis and Recognition, pages 583–586, 1995.

[34]O. Hori and D.S. Doermann. Robust table-form structure analysis based on box-driven

reasoning. In Proc. Third Int’l Conf. Document Analysis and Recognition, pages 218–221,

Montréal, 1995.

[35]J. Hu, R. Kashi, D. Lopresti, G. Nagy, and G. Wilfong. Why table ground-truthing is

hard. In Proc. Sixth Int’l Conf. Document Analysis and Recognition, pages 129–133,

Seattle, Washington, 2001.

[36]J. Hu, R. Kashi, D. Lopresti, and G. Wilfong. Medium-independent table detection. In

Proc. Document Recognition and Retrieval VII, pages 291–302, 2000.

[37]J. Hu, R. Kashi, D. Lopresti, and G. Wilfong. Experiments in table recognition. In Proc.

Workshop on Document Layout Interpretation and Applications, Seattle, Washington,

2001.

[38]J. Hu, R. Kashi, D. Lopresti, and G. Wilfong. Table structure recognition and its evalu-

ation. In Proc. Document Recognition and Retrieval VIII, pages 44–55, 2001.

[39]J. Hu, R.S. Kashi, D. Lopresti, and G.T. Wilfong. Evaluating the performance of table

processing algorithms. Int’l J. Document Analysis and Recognition, 4:140–153, 2002.

[40]M. Hurst. Layout and language: Beyond simple text for information interaction - mod-

elling the table. In Proc. Second Int’l Conf. Multimodal Interfaces, Hong Kong, 1999.

[41]M. Hurst. Layout and language: An efficient algorithm for detecting text blocks based

on spatial and linguistic evidence. In Proc. Document Recognition and Retrieval VII,

pages 56–67, 2001.

[42]M. Hurst. Layout and language: Challenges for table understanding on the web. In Proc.

Int’l Workshop on Web Document Analysis, pages 27–30, 2001.

28

[43]M. Hurst and S. Douglas. Layout and language: Preliminary investigations in recognizing

the structure of tables. In Proc. Fourth Int’l Conf. Document Analysis and Recognition,

pages 1043–1047, Ulm, Germany, 1997.

[44]M. Hurst and T. Nasukawa. Layout and language: Integrating spatial and linguistic

knowledge for layout understanding tasks. In Proc. Eighteenth Int. Conf. Computational

Linguistics, Saarbrucken, Germany, 2000.

[45]K. Itonori. Table structure recognition based on textblock arrangement and ruled line

position. In Proc. Second Int’l Conf. Document Analysis and Recognition, pages 765–768,

1993.

[46]A.K. Jain and B. Yu. Document representation and its application to page decomposition.

IEEE Trans. Pattern Analysis and Machine Intelligence, 20(3):294–308, 1998.

[47]T.G. Kieninger. Table structure recognition based on robust block segmentation. In

Proc. Document Recognition V, pages 22–32, San Jose, CA, January 1998.

[48]T.G. Kieninger and A. Dengel. Applying the T-RECS table recognition system to the

business letter domain. In Proc. Sixth Int’l Conf. Document Analysis and Recognition,

pages 518–522, Seattle, Washington, 2001.

[49]B. Klein, S. Gökkus, T. Kieninger, and A. Dengel. Three approaches to “industrial” table

spotting. In Proc. Sixth Int’l Conf. Document Analysis and Recognition, pages 513–517,

Seattle, Washington, 2001.

[50]H. Kojima and T. Akiyama. Table recognition for automated document entry system.

In High-Speed Inspection Architectures, Barcoding, and Character Recognition, volume

1384, pages 285–292, 1990.

[51]W. Kornfeld and J. Wattecamps. Automatically locating, extracting and analyzing tab-

ular data. In Proc. Twenty-first Int’l ACM SIGIR Conf. Research and Development in

Information Retrieval, pages 347–348, Melbourne, Australia, 1998.

[52]S. Krishnamoorthy, G. Nagy, S. Seth, and M. Viswanathan. Syntactic segmentation and

labelling of digitized pages from technical journals. IEEE Trans. Pattern Analysis and

Machine Intelligence, 15(7):737–747, July 1993.

[53]S.W. Lam, L. Javanbakht, and S.N. Srihari. Anatomy of a form reader. In Proc. Second

29

Int’l Conf. Document Analysis and Recognition, pages 506–509, 1993.

[54]A. Laurentini and P. Viada. Identifying and understanding tabular material in compound

documents. In Proc. Eleventh Int’l Conf. Pattern Recognition, pages 405–409, The Hague,

1992.

[55]S. Lewandowksy and I. Spence. The perception of statistical graphs. Sociological Methods

and Research, 18(2 & 3):200–242, 1989.

[56]J. Liang. Document Structure Analysis and Performance Evaluation. PhD thesis, Uni-

versity of Washington, 1999.

[57]D. Lopresti. Exploiting WWW resources in experimental document analysis research. In

LNCS, volume 2423, pages 532–543. Springer-Verlag, 2002.

[58]D. Lopresti and G. Nagy. Automated table processing: An (opinionated) survey. In Proc.

3rd Int’l Workshop on Graphics Recognition, pages 109–134, Jaipur, India, 1999.

[59]D. Lopresti and G. Nagy. A tabular survey of automated table processing. In LNCS,

volume 1941, pages 93–120. Springer Verlag, 2000.

[60]D. Lopresti and G. Wilfong. Evaluating document analysis results via graph probing.

In Proc. Sixth Int’l Conf. Document Analysis and Recognition, pages 116–120, Seat-

tle,Washington, 2001.

[61]S. Mao and T. Kanungo. Empirical performance evaluation methodology and its ap-

plication to page segmentation algorithms. IEEE Trans. Pattern Analysis and Machine

Intelligence, 23(3):242–256, March 2001.

[62]G. Nagy. Twenty years of document image analysis in PAMI. IEEE Trans. Pattern

Analysis and Machine Intelligence, 22(1):38–62, January 2000.

[63]G. Nagy and S. Seth. Hierarchical representation of optically scanned documents. In

Proc. Seventh Int’l Conf. Pattern Recognition, pages 347–349, 1984.

[64]J.A. Nelder and R. Mead. A simplex method for function minimization. Computer

Journal, (7):308–313, 1965.

[65]H.T. Ng, C.Y. Lim, and J.L.T. Koo. Learning to recognize tables in free text. In Proc.

37th Ann. Meet. Assn. Computational Linguistics, pages 443–450, Maryland, USA, 1999.

[66]L. O’Gorman. Image and document processing techniques for the RightPages electronic

30

library system. In Proc. Eleventh Int’l Conf. Pattern Recognition, pages 260–263, 1992.

[67]L. O’Gorman. The document spectrum for page layout analysis. IEEE Trans. Pattern

Analysis and Machine Intelligence, 15(11):1162–1173, November 1993.

[68]L.I. Perlovsky. Conundrum of combinatorial complexity. IEEE Trans. Pattern Analysis

and Machine Intelligence, 20(6):666–670, June 1998.

[69]C. Peterman, C.H. Chang, and H. Alam. A system for table understanding. In Proc.

Document Image Understanding Technology, pages 55–62, Annapolis, MD, 1997.

[70]M. Petrou. Learning in pattern recognition. In LNCS, volume 1715, pages 1–12. 1999.

[71]I. Phillips and A.K. Chhabra. Empirical performance evaluation of graphics recogni-

tion systems. IEEE Trans. Pattern Analysis and Machine Intelligence, 21(9):849–870,

September 1999.

[72]A. Pizano. Extracting line features from images of business forms and tables. In Proc.

Eleventh Int’l Conf. Pattern Recognition, pages 399–403, 1992.

[73]P. Pyreddy and W.B. Croft. Tintin: A system for retrieval in text tables. In Proc. Second

Int’l Conf. Digital Libraries, pages 193–200, 1997.

[74]J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco,

CA, 1993.

[75]RAF Technology, Redmond, Washington. Illuminator User’s Manual, 1995.

[76]M.A. Rahgozar and R. Cooperman. A graph-based table recognition system. In Proc.

Document Recognition III, pages 192–203, San Jose, CA, January 1996.

[77]A. Rosenfeld and A.C. Kak. Digital Picture Processing (2 vols). Academic Press, Orlando,

Florida, 1982.

[78]D. Rus and D. Subramanian. Customizing information capture and access. ACM Trans.

Information Systems, 15(1):67–101, January 1997.

[79]L. Seong-Whan and R. Dae-Seok. Parameter-free geometric document layout analysis.

IEEE Trans. Pattern Analysis and Machine Intelligence, 23(11), 2001.

[80]J.H. Shamillian, H.S. Baird, and T.L. Wood. A retargetable table reader. In Proc. Fourth

Int’l Conf. Document Analysis and Recognition, pages 158–163, 1997.

[81]S. Souafi-Bensafi, M. Parizeau, F. Lebourgeois, and H. Emptoz. Bayesian networks clas-

31

sifiers applied to documents. In Proc. Sixth Int’l Conf. Document Analysis and Recog-

nition, pages 508–511, Seattle, Washington, 2001.

[82]A. Takasu, S. Satoh, and E. Katsura. A document understanding method for database

construction of an electronic library. In Proc. Twlefth Int’l Conf. Pattern Recognition,

pages 463–466, 1994.

[83]A. Takasu, S. Satoh, and E. Katsura. A rule learning method for academic document

image processing. In Proc. Third Int’l Conf. Document Analysis and Recognition, pages

239–242, 1995.

[84]W. Tersteegen and C. Wenzel. Scantab: Table recognition by reference tables. In Proc.

Third Workshop on Document Analysis Systems, Nagano, Japan, 1998.

[85]K.M. Tubbs and D.W. Embley. Recognizing records from the extracted cells of microfilm

tables. In Proc. ACM Symp. Document Engineering, pages 149–156, McLean, Virginia,

2002.

[86]S. Tupaj, Z. Shi, C.H. Chang, and H. Alam. Extracting tabular information from text

files. Available from citeseer: http://citeseer.nj.nec.com/tupaj96extracting.html, 1996.

[87]E. Turolla, A. Belaid, and A. Belaid. Form item extraction based on line searching. In

LNCS, volume 1072, pages 69–79. Springer-Verlag, 1996.

[88]M. Viswanathan, E. Green, and M.S. Krishnamoorthy. Document recognition: An at-

tribute grammar approach. In Proc. Document Recognition III, pages 101–111, 1996.

[89]X. Wang. Tabular Abstraction, Editing and Formatting. PhD thesis, University of

Waterloo, Waterloo, Ontario, Canada, 1996.

[90]Y. Wang, R. Haralick, and I.T. Phillips. Zone content classification and its performance

evaluation. In Proc. Sixth Int’l Conf. Document Analysis and Recognition, pages 540–

544, Seattle,Washington, 2001.

[91]Y. Wang and J. Hu. Detecting tables in HTML documents. In LNCS, volume 2423,

pages 249–260. Springer-Verlag, 2002.

[92]Y. Wang, I.T. Phillips, and R. Haralick. Automatic table ground truth generation and a

background-analysis-based table structure extraction method. In Proc. Sixth Int’l Conf.

Document Analysis and Recognition, pages 528–532, Seattle,Washington, 2001.

32

[93]Y. Wang, T. Phillips, and R.M. Haralick. Table detection via probability optimization.

In LNCS, volume 2423, pages 272–282. Springer-Verlag.

[94]T. Watanabe, Q. Luo, and N. Sugie. Layout recognition of multi-kinds of table-form

documents. IEEE Trans. Pattern Analysis and Machine Intelligence, 17(4):432–445, April

1995.

[95]K.Y. Wong, R.G. Casey, and F.M. Wahl. Document analysis system. IBM Journal of

Research and Development, 26(6):647–656, November 1982.

[96]M. Yoshida, K. Torisawa, and J. Tsujii. A method to integrate tables of the world wide

web. In Proc. Int’l Workshop on Web Document Analysis, pages 31–34, 2001.

[97]B. Yu and A.K. Jain. A generic system for form dropout. IEEE Trans. Pattern Analysis

and Machine Intelligence, 18(11):1127–1134, November 1996.

[98]K. Zuyev. Table image segmentation. In Proc. Fourth Int’l Conf. Document Analysis

and Recognition, pages 705–708, 1997.

33

