
Semi-Automatic Semantic Annotations

for Web Documents

Nadzeya Kiyavitskaya1, Nicola Zeni1,
James R. Cordy2, Luisa Mich1 and John Mylopoulos3

1 Department of Information and Communication Technology,
University of Trento, via Sommarive, 14, I-38050 Povo, TN, Italy

{nadzeya.kiyavitskaya, nicola.zeni, luisa.mich}@dit.unitn.it
2 School of Computing, Queens University,

Kingston, Ontario, Canada K7L 3N6
cordy@cs.queensu.ca

3 Bahen Centre for Information Technology, University of Toronto,
Ontario, Canada M5S 2E4

jm@cs.toronto.edu

Abstract. Semantic annotation of the web documents is the only way
to make the Semantic Web vision a reality. Considering the scale and
dynamics of worldwide web, the largest knowledge base ever built, it be-
comes clear that we cannot afford to annotate web documents manually.
In this work we propose a generic domain-independent architecture for
semi-automatic semantic annotation, basing on the lightweight and ro-
bust techniques, proven effective in source code processing for software
analysis field. We demonstrate feasibility of our method applying it for
annotation of the documents for Tourism domain. The results of this
experiment are validated using a three-stage evaluation scheme.

1 Introduction

Semantic annotation is the process of inserting tags in a document to assign
semantics to text fragments allowing to create the documents processable not
only by humans but also automated agents. However, considering the scale and
dynamics of worldwide web, application of the traditional natural language pro-
cessing techniques to annotate documents semantically must be revised. From
the engineering perspective there is a number of requirements important to be
faced when designing a text processing system [Leidner2003] [Boguraev1995]:

– accuracy: performance must be estimated to access the ability of the tool to
retrieve all and only correct answers;

– flexibility and robustness: these features characterize the viability of a system
under abnormal conditions and stability to different text types or domains;

– scalability: space and run time limitations must be overcome;
– data sparseness: dependence on expensive training resources can be an ob-

stacle for porting the tool in a different domain;



– complexity: long response time can render a system unacceptable for human
users;

– multilinguality: independence from character encodings, lexicographic sort-
ing orders, display of numbers, dates etc. needs to be ensured.

Similar problems are faced up in the software analysis field when developing
tools for design recovery, source code analysis and markup. For this reason, we
can exploit a large heritage gained by this field, which developed a number of
the techniques enable to process billions lines of the source code. We propose
to apply these methods as a base of new lightweight tool for semi-automatic
semantic annotation of web documents. In the present paper we demonstrate
a preliminary experiment on employment the same technical solutions in the
domain of Tourism, we also describe the framework to evaluate the quality of
annotations.

The paper is structured as follows: section 2 introduces text processing with
TXL, section 3 provides the details of our approach, section 4 describes the setup
of our first experiment, section 5 presents an evaluation framework and results
of the experiment, section 6 reviews related projects in the field, and the final
section summarizes the results and outlines directions for future work.

2 Semantic Annotation as Design Recovery

Our lightweight method for text processing is based on the technology proven
efficient instrument to help software analysis area, and in particular, in reverse
engineering and design recovery.

Software reverse engineering is the process of identifying engineers software
components, their inter-relationships and representing these entities at a higher
level of abstraction [Nelson1996]. This method can be also combined with con-
ceptual modeling of the source code. Specialization of reverse engineering, design
recovery implies the static analysis of the source code of a (large) software sys-
tem to identify entities and relationships according to a software design model.
The result is normally a design database and an the source code marked up
with design relationships. Software design recovery has been highly successful at
both technical and business-level semantic markup of large scale software sys-
tems written in a wide variety of programming languages.

Interestingly, two different domains, document analysis for the Semantic Web
and design recovery of source code, pose similar problems:

– the need for robust parsing techniques because real documents do not always
match the grammars of the languages they are written in;

– the need to understand the semantics of the source text according to a se-
mantic model;

– semantic clues drawn from a vocabulary of the semantic domain;
– contextual clues drawn from the syntactic structure of the source text;
– inferred semantics from exploring relationships between identified semantic

entities and their properties, contexts and related other entities.



We propose to use source analysis and transformation system TXL1 as the basis
of a new lightweight method for SA. TXL allows for expressing solutions using
structural source transformation from input to output.

The structure imposed on input is specified by an ambiguous context free
grammar. Transformation rules are then applied, and transformed results re-
turned to text. TXL uses full backtracking with ordered alternatives and heuris-
tic resolution which allows efficient, flexible, general parsing. Grammars and
transformation rules are specified by example. The transformation process in
TXL can be considered as term rewriting, but under functional control. Func-
tional programming control provides abstraction, parametrization and scoping.
TXL allows grammar overrides to extend, replace and modify existing specifi-
cations. Grammar overrides can be used to express robust parsing, technique to
allow errors or exceptions in input not explained by grammar. Overrides can
also express island grammars. Island parsing recognizes interesting structures,
“islands”, embedded in a “sea” of uninteresting or unstructured background.
TXL also supports agile parsing – customization of the parse to each individual
transformation task. This is a simple example of TXL program realizing island
parsing paradigm:

% Input is a sequence of items
redefine program

[repeat item]
end redefine

% Items are either interesting or uninteresting
define item

[declaration_or_statement]
| [uninteresting]

end define

define uninteresting
[token] | [key]

% TXL idiom for "any input item"
end define

% Transform aspect only; rest of input remains the same
rule main
replace $ [declaration_or_statement]

Code[declaration_or_statement]
by

Code [prettyFormat]
end rule

Originally, TXL was designed for experimenting with programming language
dialects, but soon it was realized useful for many other tasks, such as static

1 http://www.txl.ca



analysis, interpreters, preprocessors, theorem provers, source markup, language
translation, web migration, etc. Moreover, TXL was successfully used for ap-
plications other than programs: handwritten math recognition, document table
structure recognition [Zanibbi2002] [Zanibbi2004]; business card understanding
[Oertel2004].

3 Semantic Annotation Methodology

Our methodology is based on the LS/2000 software analysis architecture [Dean2001]
which contains three passes:

1. Lightweight robust parse to get basic structure, transformation rules use
vocabulary and structural patterns to infer source markup of basic facts;

2. Facts are externalized to database for inference;
3. Transformation rules use inferences and structural patterns to infer semantic

markup of design facts, marked-up source is ready for design-aware trans-
formations.

We designed a tool that performs semantic annotation in similar manner (Fig 1).
The input of the system consists of textual documents and a conceptual

Fig. 1. The workflow of semantic annotation method based on the LS/2000 software
analysis system

scheme. The conceptual scheme can be a part of existing domain ontology. En-
tities of the scheme are used to generate tags for annotation.

The workflow has two main phases:

1. First phase consists of lightweight parsing and semantic markup of basic
entities (email and web addresses, monetary formats, date and time formats,
and so on) and language structures (object, document, paragraph, sentence
and phrase structure);

2. Second phase is externalization of the facts to database, which can be then
used by search engine for queries.



The transformations of the last third stage are not yet implemented in our tool,
but we plan to explore this technique in future to verify if the quality of automatic
annotations can be improved imposing constraints of the conceptual scheme.

Following section explains in detail all the stages of the algorithm on the
example of application in Tourism domain.

4 Experiment Setup

To prove the viability of our method we present the results of our preliminary
experiment in the domain of travel documents, in particular, accommodations
ads of the popular tourist destinations in Italy (Fig 2).

Fig. 2. Example of an announcement retreived from the web site

The goal of this work was to provide the users browsing on-line ads with
relevant information, such as, for example, location and price of the accommo-
dation, availability, facilities provided, etc. For this purpose the accommodation
ads must be marked up according to the domain conceptual model (Fig 3).

Fig. 3. Conceptual model of the domain of accommodation ads



In order to make a realistic test of the generality of the method, we restricted
ourselves to some constraints: no proper nouns or location-dependent phrases in
our vocabulary, raw uncorrected text, and no formatting or structural cues. Fol-
lowing the methodology described in the previous section, for this experiment
we adopted the same multi-level process (Fig 4).

Fig. 4. Architecture of the semantic annotation process

The architecture explicitly factors out reusable domain-independent knowl-
edge such as the structure of basic entities and language structures, shown on
the left hand side, while allowing for easy change of semantic domain, charac-
terized by vocabulary and conceptual scheme, shown on the right. This way we
facilitate reusability of the tool over different domains and document types.

First, text is parsed into sentences (can be any other text unit) and basic
objects are detected. These objects usually can be described by a small set of
patterns and then reused over different domains. So far our list of objects in-
cludes e-mail addresses, web addresses, phone numbers, dates and prices. For
instance, the grammar for phone numbers is represented in the following way:

% Part of price grammar
tokens

number "\d\d*"



end tokens

define money
[amount][opt hyphen_amount][space_currency]

|[currency][opt ’:][opt space][amount]
[repeat hyphen_amount]

|[repeat number_dot][anynumber]
[dot_zerozero][opt space_currency]

end define

The phrase grammar block carries structural information how to delimit text
units that we want to markup. This unit can be a short phrase, a sentence or
whole paragraph depending on the required granularity of annotation. In our
experiments with accommodation advertisements we used sentence grammar
because even if the text is short the user is interested in complete answer.

Then using the objects found on the previous stage and checking for the
presence of category keywords, the related phrases are identified and marked
up. XML grammar component used at the Markup phase is actually the gram-
mar of tags for inserting markup into documents (i.e. grammar for XML open
tag: ‘<[identifier]‘>, for XML closing tag ‘</[identifier]‘>). Category wordlist is
domain dependent component including set of categories and keyword lists cor-
responding to each category. Keyword list consists of positive markers (simply
one word or combination of words, as for example “Information System”) and
negative markers. If for a given category any of the positive markers are detected
within a text unit (sentence in current experiment), then the unit is annotated
under this category, unless any of negative markers is found.

Annotated documents are provided to the Mapping phase which fills the
database scheme with annotations. Domain independent component of this stage
are scheme grammar and XML grammar. Scheme grammar is used for reading
the database scheme from file, and XML grammar for extracting markups from
the output documents of the previous stage. Finally XML markups are mapped
into correspondent fields of the database. It is important to emphasize that
“complex” text processing (i.e. objects recognition, sentence delimiting) is made
only once at the first phase, and never repeated again. All the following phases
perform fast superficial processing using very simple grammars.

5 Evaluation Framework

The choice of evaluation method to verify the quality of automatic annotation
is an additional difficulty. For this purpose we specially designed a three steps
evaluation framework.

In the first step we compared the system output directly with human anno-
tations. We assume that human performance is the upper-bound for automatic
language analysis. However, this type of evaluation cannot be applied on the large
scale, because obviously we cannot afford human annotators tagging gigabytes of
text. Also in this case, we must take into account annotators’ disagreement and



in order to obtain realistic evaluation we must “calibrate” system performance
relative to human performance. For this purpose we calculated not only the sys-
tem performance against each manual annotation, but also the performance of
each human annotator against the other. Subtracting the difference between the
performances we can conclude how much of human work could be actually done
by the tool.

In the second step, we check if the use of automatic tool increases the pro-
ductivity of human annotators. We noted the time used for manual annotation
of the original textual documents and compared it to the time used for manual
correction of the automatically annotated documents. The percentage difference
of these two measures shows how much time can be saved when the human an-
notator is assisted by the tool.

Our third step compares system results against the human corrections done
in the previous step. The distinction of this phase from the first one is that when
a human annotator works directly on the original document he/she can make
errors or miss some items because of the lack of attention; while working on the
document already annotated by the tool he/she can easily note the defects and
therefore produces a higher quality annotation.

To estimate the system performance we applied the following metrics (ac-
cording to the definitions provided in [Yang1999]):

Recall =
TP

TP + FN
(1)

Precision =
TP

TP + FP
(2)

Fallout =
FP

FP + TN
(3)

Accuracy =
TP + TN

N
(4)

Error =
FP + FN

N
(5)

We also calculated F-measure, the harmonic mean of recall and precision:

F−measure =
2 × Recall × Precision

Recall + Precision
(6)

Here N is the total number of the test items:

N = TP + FP + FN + TN (7)

TP is the number of items correctly assigned to a category (true positives);
FP is the number of items incorrectly assigned to a category (false positives);
FN is the number of items incorrectly rejected from a category (false negatives);
TN is the number of items correctly rejected from a category (true negatives).



5.1 Evaluation against Human Annotation

In the first stage of evaluation the tool and each of two human annotators marked
up a sample set of ten advertisements different from the training set used to tune
the tool for the domain. The tool was then compared against each of the human
markers for this set separately (Table 1), and then calibrated against each of the
two as definitive (Table 2).

Table 1. System performance for each semantic category

Entity Recall Recall Recall Precision Precision Precision
(A1) (A2) (avg) (A1) (A2) (avg)

Location 90,91% 90,91% 90,91% 100,00% 100,00% 100,00%
Facility 100,00% 87,50% 93,75% 47,83% 60,87% 54,35%
Price 100,00% 100,00% 100,00% 88,24% 82,35% 85,29%
Type 100,00% 100,00% 100,00% 60,00% 66,67% 63,33%
Term 50,00% 66,67% 58,33% 57,14% 57,14% 57,14%
Contact 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%

Table 2. Calibrating system performance against human annotators

Measure A2 vs A1 Tool vs A1 A1 vs A2 Tool vs A2
Recall 90.63% 92.19% 87.88% 92.42%
Precision 87.88% 73.75% 90.63% 76.25%
Fallout 3.15% 8.27% 2.38% 7.54%
Accuracy 95.60% 91.82% 95.60% 92.45%
Error 4.40% 8.18% 4.40% 7.55%
F-Measure 89.23% 81.94% 89.23% 83.56%

In order to thoroughly compare human and system performances it is nec-
essary to observe differences of F-measure, as it is an aggregate characteristic.
The obtained variance is 5.67–7.29%, which leads us to conclusion that the tool
was able to complete about 92.71–94.33% of human work.

5.2 Productivity Measures

During this stage of evaluation we compared the times spent by annotator to
perform annotation “from the blank page” and to correct system annotation.
The results showed that the tool saved about 78% of the annotator’s time on
our sample set of data. Thus with an appropriate interface for doing corrections
easily, the time savings would likely be significantly greater than we observed.



5.3 Evaluation against Human Annotation Correcting System

In the third stage, we gave the human annotators the advantage of correcting
automatically marked up text to create their markups, and compared the final
human markup to the original opinion of the tool (Table 3).

Table 3. System performance against manually corrected annotations

Rome (10 ads) Rome (10 ads) Rome (100 ads) Venice(10 ads)
Measure Training set Test set-1 Test set-1 Test set-2
Recall 98.73% 94.20% 92.31% 86.08%
Precision 97.50% 97.01% 96.93% 95.77%
Fallout 0.84% 0.87% 0.93% 1.29%
Accuracy 99.06% 98.00% 97.43% 95.51%
Error 0.94% 2.00% 2.57% 4.49%
F-Measure 98.11% 95.59% 94.56% 90.67%

Comparing the results on different test sets the performance decreases slightly,
only for the last test set Recall value changes significantly. This shortcoming can
be explained by the high dissimilarity of these documents to the training docu-
ments by content and structure. For example, in this case location names were
represented as a string with exact postal address before textual description of
the accommodation, which maid it difficult to detect phrases related to loca-
tions, especially because in our experiment for the sake of generality we did not
use gazetteers.

Concluding this experimental study we can say is that the method based on
the software design techniques has a potential. Even without local knowledge
and using a very small vocabulary, we have been able to demonstrate accuracy
comparable to the best heavyweight methods, albeit thus far for a very limited
domain. Performance of our as yet untuned experimental tool is also already very
fast, handling 100 advertisements for example in about 1 second on a 1 GHz PC.

6 Related Work

The development of different Semantic Web applications became recently the
area of the intensive research work. In this review we list some of these tools and
consider the methodologies exploited and system requirements declared.

One of the first attempts to allow semantic annotation of web documents was
done with the SHOE system [Sean97], enabling web page authors to manually
annotate their documents with machine-readable metadata. Another pioneer-
ing tool assisting to insert semantic markups in a manual way was Ontobroker
[Decker99]. AeroDAML tool [Kogut2001] applied natural language information
extraction techniques to automatically generate DAML annotations from web
pages. Project of Karlsruhe University, Pankow [Cimiano04] uses statistical and



pattern-matching techniques to automatically discover relevant concepts in the
document. Among the variety of tools we are going to underline several most
recent projects oriented to a large-scale text markup.

SemTag [Dill2003] is an application that performs automated semantic tag-
ging of large corpora. It is based on the Seeker platform for large-scale text
analysis. It tags large numbers of pages with terms from a standard ontology.
As a centralized application it can use corpus statistics to improve the quality
of tags. So far, the TAP knowledge base has been used as a standard ontology.
TAP contains lexical and taxonomic information about: music, movies, authors,
sports, autos, health, and other popular objects. The goal of SemTag annotator
is to detect the occurrence of these entities in web pages.

– Methodology. SemTag flow consists of the following steps: 1) Spotting pass:
documents are retrieved, tokenized, and then processed to find instances
of approximately 72 ,KB labels of TAP knowledge base. 2) Learning pass:
sample of data is scanned to determine distribution of terms. 3) Tagging pass:
each reference is disambiguated and a record is inserted into a database.

– Evaluation. SemTag was evaluated on a set of 264 million web pages, the tool
was able to generate and disambiguate 550 million semantic tags, approxi-
mately 79% of them were judged to be on-topic. During this experiment 750
human judgments were used as a training set for the algorithm and other
378 human judgments were applied to estimate the performance. System
was realized on 128 dual processor 1GHz machines. The total time taken to
process the web is 32 hours.

The KIM (Knowledge and Information Management) platform [Kiryakov2005]
is an tool for automatic ontology-based named entities annotation, indexing and
retrieval based on GATE (General Architecture for Text Engineering), Univer-
sity of Sheffield2. It uses lightweight upper-level ontology (KIMO) consisting
of the named entity classes (about 250 classes and 100 properties) encoded in
RDF(S). Also KIM has a knowledge base of approximately 80,000 entities of
general importance to allow information extraction on inter-domain web con-
tent.

– Methodology. KIM is build on the top of GATE architecture. Text processing
in GATE is fulfilled in several steps, including a number of NLP techniques,
such as tokenization, splitting to sentences and part-of-speech tagging. A
semantic gazetteer is used to generate lookup annotations. Ontology aware
pattern-matching grammars allow precise class information to be handled
via rules at the optimal level of generality. The grammars are used to rec-
ognize named entities with class and instance information referring to the
KIM ontology and the knowledge base. Based on the recognized semantic
constructions, template relation construction is performed by means of the
grammar rules. As a result, the knowledge base is enriched with the rec-
ognized relations between entities. On the final phase, previously unknown
aliases and entities are added to the knowledge base with their specific types.

2 http://gate.ac.uk



– Evaluation. KIM was tested for flat named entities types [Popov2003]: date,
person, organization, location, percent, monetary amounts, reporting high
accuracy metrics for this experiment: average Recall – 84%, Precision – 86%.
KIM platform requires Pentium4 (2.53GHz) computer to acquire the fol-
lowing performance rates: annotation – 8 kb/s; indexing – 27 kb/s; storage
– 6 kb/s [Popov2004]. The time grows logarithmically depending on the size
of input documents.

In KIM, as well as in SemTag, annotation is considered as the process of assign-
ing to the entities in the test links to their semantic descriptions provided by
ontology, therefore the focus of is mainly maid on recognition of named entities,
categorization of the larger text fragments is out of the scope of these projects.

S-CREAM (Semi-automatic CREAtion of Metadata) provides an annota-
tion and authoring framework that integrates a learnable information extraction
component [Handschuh2002].

– Methodology. A domain ontology can be the basis for the annotation of
different types of documents. The user have do define which part of the
ontology is relevant for the learning task. The user can perform a crawl to
collect the necessary documents. Then users have too manually annotate a
corpus for training the learner. Text is preprocessed using Annie, shallow
information extraction system included in Gate package (text tokenization,
sentence splitting, part of speech tagging, gazetteer lookup and named entity
recognition). Each document of the corpus is processed by learning plugin
which generates extraction rules. Then the induced rules are applied for
semi-automatic annotation.

– Evaluation. No evaluation is provided in publications.

Another tool that was tried one a large-scale is SCORE [Sheth2002]. It inte-
grates several information extraction methods, including probabilistic, learning,
and knowledge-based techniques, then combines the results from different clas-
sifiers.

Much of the work in the information extraction community is aimed at
“rule learning”, automating the creation of extraction patterns from previously
tagged or semi-structured documents [Nobata1999] and unsupervised extraction
[Etzioni2005]. This issues our work does not address, however the actual appli-
cation of the patterns to documents is in many ways similar to our method, in
particular, ontology-based method of Embley et als [Wessman2005]. The ma-
jor differences lie in the implementation whereas Embleys method relies pri-
marily on regular expressions, our approach combines high-speed context-free
robust parsing combined with simple word search. Similar to wrappers Emb-
leys approach is intended for processing preferably semi-structured web pages
with multiple records: the more structured the page, the better the annota-
tion results. Wrapper induction methods such as Stalker [Muslea2003] and BWI
[Freitag2000] which try to infer patterns for marking the start and end points
of fields to extract, also relate well to our work. When the learning stage is over



and these methods are applied, their effect is quite similar to our results, identi-
fying complete phrases related to the target concepts. However, our results are
achieved in a fundamentally different way by predicting start and end points
using phrase parsing in advance rather than phrase induction afterwards. The
biggest advantage of wrappers is that they need small amount of training data,
but on the other hand they strongly rely on contextual clues and document
structure. In this case if the source document would be reorganized, the tool
should be retrained on the newly annotated examples. In contrast, our method
uses context-independent parsing and does not require any strict input format.

Our approach fundamentally differs from these tools: it uses an extremely
lightweight but robust context-free parse in place of tokenization and part-of-
speech recognition; our method does not have the learning phase, instead it has
to be tuned manually when being ported to a particular application, substitut-
ing or extending domain dependent components; it does not necessarily require
a gazetteer or knowledge base of known proper entities rather it infers their
existence from their structural and vocabulary context, in the style of software
analyzers. This advantage makes our tool more fast and less dependent on the
additional knowledge sources.

7 Conclusions and Future Work

In this work we have demonstrated that applying software design recovery tech-
niques to semantic annotation of documents is feasible and has potential. It is
also clear that these techniques can retain their efficiency for bigger inputs, ex-
hibiting very fast and linear performance even without tuning. We consider as
contribution of our work also the cost-effective evaluation scheme proposed to
measure the quality of annotations.

In future we plan to prove our method for the larger documents, richer con-
ceptual models and different domains. Additionally, we intend to experiment
with a number of techniques used in software analysis area that, thus far, we
have not taken advantage of: alias resolution, unique naming, architecture pat-
terns, markup refinement and others.

References

[Boguraev1995] Boguraev, B.K., Garigliano, R., Tait, J.I.: Editorial, Natural Language
Engineering 1(1) 1–7, 1995, ISSN: 1351-3249(199503)1:1;1-F

[Cimiano04] Cimiano, P., Handschuh, S., and Staab, S.: Towards the self-annotating
web. In Proceedings of the 13th international conference on World Wide Web,
462–471, ACM Press, 2004

[Cordy2004] Cordy, J.: A Language for Programming Language Tools and Applica-
tions. Proc. of LDTA 2004 ACM 4th Int. Workshop on Language Description,
Tools and Applications, Barcelona, April, 2004

[Decker99] Decker, S., Erdmann,M., Fensel,D., and Studer, R.: Ontobroker: On-
tology based access to distributed and semi-structured unformation. In



DS-8: Database Semantics - Semantic Issues in Multimedia Systems, IFIP
TC2/WG2.6 Eighth Working Conference on Database Semantics, 351–369, Ro-
torua, New Zealand, 1999

[Dill2003] Dill, S., Eiron, N., Gibson, D., Gruhl, D., Guha, R., Jhingran, A., Kanungo,
T., McCurley, K. S., Rajagopalan, S., Tomkins, A., Tomlin, J.A., Zien, J. Y.:
A Case for Automated Large-Scale Semantic Annotation. Journal of Web
Semantics, 1(1) 115–132, 2003

[Dean2001] Dean, T., Cordy, J., Schneider, K., Malton, A.: Experience using design
recovery techniques to transform legacy systems. In Proc. 17th Int. Conference
on Software Maintenance, 622-631, 2001

[Etzioni2005] Etzioni, O., Cafarella, M.J., Downey, D., Popescu, A.M., Shaked, T.,
Soderland, S., Weld, D.S., Yates, A.: Unsupervised named-entity extraction
from the web: An experimental study. Artificial Intelligence 165, 91-134, 2005

[Freitag2000] Freitag, D., Kushmerick, N.: Boosted wrapper induction. In Proc. 17th
National Conference on Artificial Intelligence, 577-583, 2000

[Handschuh2002] Handschuh, S., Staab, S., Ciravegna, F.: S-CREAM - Semi-automatic
CREAtion of Metadata. The 13th International Conference on Knowledge En-
gineering and Management (EKAW2002), ed. Gomez-Perez, A., Springer Ver-
lag, 2002

[Kiryakov2005] Kiryakov, A., Popov, B., Terziev, I., Manov, D., Ognyanoff, D.: Seman-
tic Annotation, Indexing, and Retrieval. Elsevier’s Journal of Web Sematics,
2(1), 2005

[Kiyavitskaya 2004] Kiyavitskaya, N., Zeni, N., Mich, L. and Mylopoulos, J.: Experi-
menting with Linguistic Tools for Conceptual Modelling: Quality of the models
and critical features. Proc. of the NLDB2004, 3136 135–146, 2004

[Leidner2003] Leidner, J. L.: Current Issues in Software Engineering for Natural Lan-
guage Processing. Proc. of the Workshop on Software Engineering and Archi-
tecture of Language Technology Systems (SEALTS), the Joint Conf. for Human
Language Technology and the Annual Meeting of the Noth American Chapter
of the Association for Computational Linguistics (HLT/NAACL’03), Edmon-
ton, Alberta, Canada, 45–50

[Kogut2001] Kogut, P. and Holmes, W.: AeroDAML: Applying Information Extraction
to Generate DAML Annotations from Web Pages. First International Confer-
ence on Knowledge Capture (K-CAP 2001). Workshop on Knowledge Markup
and Semantic Annotation, Victoria, B.C., Canada, October 2001

[Muslea2003] Muslea, I., Minton, S., Knoblock, C.A.: Active learning with strong and
weak views: A case study on wrapper induction. In Proc. 18th Int. Joint Con-
ference on Artificial Intelligence, 415-420, 2003

[Nelson1996] Nelson, M.L.: A Survey of Reverse Engineering and Program Compre-
hension, 1996

[Nobata1999] Nobata, C., Sekine, S.: Towards automatic acquisition of patterns for
information extraction. In Proc. International Conference on Computer Pro-
cessing of Oriental Languages, 1999

[Oertel2004] Oertel, C., O’Shea, S., Bodnar, A. and Blostein, D.: Using the Web to
Validate Document Recognition Results: Experiments with Business Cards.
Proc. of the SPIE, 5676 17–27, 2004

[Popov2003] Popov, B., Kiryakov, A., Ognyanoff, D., Manov, D., Kirilov, A., Gora-
nov, M.: Towards Semantic Web Information Extraction. Human Language
Technologies Workshop at the 2nd International Semantic Web Conference
(ISWC2003), 20 October 2003, Florida, USA



[Popov2004] Popov, B., Kiryakov, A., Ognyanoff, D., Manov, D., Kirilov, A.: KIM –
a semantic platform for information extaction and retrieval. Journal of Web
Semantics, 10(3-4), 2004, 375–392, Cambridge University Press

[Sean97] Sean, L., Lee, S., Rager, D., and Handler, J.: Ontology-based web agents.
Proceedings of the First International Conference on Autonomous Agents
(Agents’97), eds. Johnson, W.L., and Hayes-Roth, B., 59–68, Marina del Rey,
CA, USA, 1997, ACM Press

[Sheth2002] Sheth, A., Bertram, C., Avant, D., Hammond, B., Kochut, K., Warke,
Y.: Managing Semantic Content for the Web. IEEE Internet Computing, 6(4),
80-87, 2002

[Wessman2005] Wessman, A., Liddle, S.W., Embley, D.W.: A generalized framework
for an ontology-based data-extraction system. In Proc. 4th Int. Conference on
Information Systems Technology and its Applications, 239-253, 2005

[Yang1999] Yang, Y.: An evaluation of statistical approaches to text categorization.
Journal of Information Retrieval, 1999, 1(1-2), 67–88

[Zanibbi2002] Zanibbi, R., Blostein, D., Cordy, J.R.: Recognizing Mathematical Ex-
pressions Using Tree Transformation, IEEE Transactions on Pattern Analysis
and Machine Intelligence, 24 (11), 1455–1467, 2002

[Zanibbi2004] Zanibbi, R., Blostein, D., Cordy, J.R.: A Survey of Table Recognition:
Models, Observations, Transformations, and Inferences. International Journal
of Document Analysis and Recognition, 7(1), 1–16, Sept. 2004


