
Evaluating the Evolution of Small Scale Open
Source Software Systems

Chanchal Kumar Roy and James R. Cordy

Queen’s University, Kingston, Ontario, Canada K7L3N6
{croy, cordy}@cs.queensu.ca

http://www.cs.queensu.ca/~cordy

Abstract. For real-world software to remain satisfactory to its stake-
holders requires its continual enhancement and adaptation. Acceptance
of this phenomenon, termed software evolution, as intrinsic to real world
software has led to an increasing interest in disciplined and systematic
planning, management and improvement of the evolution process. Al-
most all of the previous work on software evolution has been concerned
with the evolution of large scale real-world software systems developed
within a single company using traditional management techniques, or
with the large scale open source software systems (LSOSSS). However,
there is to our knowledge little or no work that has considered small scale
open source software systems (SSOSSS). This paper presents an analysis
of the evolution behavior of two small size open source software systems,
the Barcode Library and Zlib. Surprisingly, unlike large scale open source
software systems, the evolution behavior of these small size open source
software systems appears to follow Lehman’s laws for software evolution.

Key Words: Small Scale Open Source Software Systems, Case Study,
Software Evolution, Metrics, Lehman’s Law of Software Evolution, Soft-
ware Maintenance.

1 Introduction

The software maintenance phase of the software life cycle is often underesti-
mated, although it consumes remarkable resources. During the 1970s, mainte-
nance was estimated to account for thirty-five to forty percent of the software
budget for an information systems organization. By the 1980s, estimates of the
expenditure had reached sixty percent of a software system, from initial vision
to abandonment [8].

Software systems evolve during the software life cycle due to product im-
provement and additional development to include new features. This growth is
accompanied by increasing complexity of the software. At a certain point, every
new release introduces new complexity and renders development more difficult.
As this point is reached it becomes necessary to analyze the structure of the
system to identify potential shortcomings which may be candidates for restruc-
turing and as a consequence, the term Software Evolution is introduced. Software

evolution, i.e. the process by which programs change shape, adapt to the mar-
ketplace and inherit characteristics from preexisting programs, has become a
subject of serious academic study in recent years. Partial thanks for this goes to
Lehman and other pioneering researchers. Major thanks, however, goes to the
increasing strategic value of software itself [16].

The larger a software product grows, the more important the ability of the
architecture of the system to support evolvability becomes. Focusing on the
analysis of software evolution has revealed a high potential for improvement
of the software development process. Software evolution is more important as
systems become longer lived. However, evolution is challenging to study due to
the longitudinal nature of the phenomenon in addition to the usual difficulties
in collecting empirical data [8].

Often the real structure of software system is not fully known to engineers.
Therefore, it is difficult to reason about any possible deficiencies and how they
may be corrected. Thus, it is critical to capture software architecture for the
maintainability of a software system. After such an analysis, restructuring can
be applied, which may help to improve the discovered situation. In the last
few years numerous methods for the analysis of software architecture have been
developed. Different sources of information, for example release information,
design documents, and source code, are used to draw conclusions about the
structure of software systems. Many approaches base their analyses on the micro
level of program source code. For very large systems these approaches can reach
a level where it is difficult to make any reliable statements about the quality
of the software. Instead, methods that focus on the macro level (for example
number of modules/subsystems, number of classes, and so one) must be applied
to analyze these large systems.

A study of the literature reveals that most of the previous work on software
evolution has looked primarily at large real-time software systems [11] or large
open source software [13], [14], such as the Linux kernel. Surprisingly, little or
no work has been concerned with the evolution of smaller size software systems,
which leads us to think about observing the evolution behavior of small size open
source software systems. This paper presents a study of the evolution behavior of
two such small size open source software systems, the Barcode Library and Zlib.
We consider the evolution for both the systems, with particular emphasis on the
Barcode Library. We have applied both micro and macro level analysis to these
systems. However, as our target systems are very small in size, we particularly
focus on the micro level, measuring evolution of the uncommented non-blank
line of codes (UNBLOC or ULOC for short).

The rest of this paper is organized as follows. In Section 2, some significant
related work is reviewed. In Section 3, a brief description of the target open
source software systems is provided. Section 4 presents the methodology and
measuring metrics used in this work. In Section 5, a detailed case study observing
the evolution behavior of the target software systems is presented, and finally
Section 6 summarizes our observations and conclusions.

2 Related Work

An extensive study on software evolution has been carried out by Lehman et
al. [9], [10], [11], [12], over the last 35 years. Based on their experience we have
several laws of software evolution, known as Lehman’s Laws of Software Evo-
lution [11], [12]. The work by Godfrey et al. [7] has shown that Linux continu-
ously exhibits a global super-linear growth pattern, and recently Robles et al.
[14] conclude that Lehman’s laws, especially the 4th law [11] is not well fitted
to large size open source software systems. However, a more detailed empirical
study [13] does not support the hypothesis that open-source development fosters
faster system growth than closed-source development as opposed to [7], [14]. In
[6], the authors examined the structure of several releases of a Telecommunica-
tions Switching System (TSS) stored in a database of product releases and found
that there is a significant difference in the behavior of the whole system versus
its subsystems. In [2], Burd et al. have evaluated the evolution of the GCC com-
piler and found interesting results. Capiluppi et al. have also authored several
works on the evolution of open source software projects [4] and have proposed
some models [3] working with mid-size projects. Succi et al. [17] also observed
super-linearity in the evolution of the Linux kernel, but found linear growth for
both GCC and Apache.

3 Target Open Source Software: Barcode Library and
Zlib

In our work we have studied two useful small scale open source software systems,
the Barcode Library and Zlib Tool. The Barcode package [1] is mainly a C library
for creating bar-code output files. It includes both command line and graphical
front-ends. The package is designed as a library because the main use for barcode-
generation tools is embedding in other applications. The library addresses bar
code printing as two distinct problems: creation of bar information and actual
conversion to an output format. Based on the functionality, the Barcode Library
is divided into five modules: the Front-End Module, the Output Module, the Basic
Encoding Module, the Advanced Encoding Module and the Header File Module.
More detail about Barcode can be found in [1] and in the relevant documentation
of the different versions.

Zlib [15] is a well known compression tool which is also designed to be a
free, general-purpose, legally unencumbered (i.e., not covered by any patents),
lossless data-compression library for use with virtually any computer hardware
and operating system. The Zlib data format is itself portable across platforms.
In this work we study both of these tools but focus particularly on the evolution
of the Barcode package.

4 Methodology

We have collected 9 different releases of the Barcode Library and 43 different
releases of Zlib from their home pages. We have calculated the total size, total

lines of code (LOC), and number of uncommented non-blank lines of code (UNB-
LOC or ULOC for short) for each of the releases of both the software systems.
For the case of Barcode Library, we have also done the same for the five modules
mentioned in Section 3 above. The open source program Numlines [18] is used
to assist in these calculations. For each of the releases of the Barcode Library
and Zlib we have also calculated the number of global functions, variables and
macros using Ctags [5]. For drawing the least-squares fit of the plotted data a
small java tool is developed and called the Least-Squares Fitter (LSF).

There are several kinds of metrics being used by different researchers. In this
work we have used the following metrics for observing the evolution of Barcode
Library and Zlib. In the following, we use the usual notation Releasei for the ith

release, Growing Ratei for the growing rate of the ith release, and so on.

Sizei = Size of Releasei in bytes i.e., total size of ith release in bytes
UNB-LOCi = Number of uncommented non-blank LOC in Releasei

Addedi = Number of UNB-LOC of the newly added files in Releasei

Changedi = Number of UNB-LOC of the changed/modified files in Releasei

Growing Ratei =(Addedi X 100) / (UNB-LOCi−1)
Changing Ratei =(Changedi X 100) / (UNB-LOCi−1)
Handledi = (Changedi + Addedi) - (Changedi−1 + Addedi−1)
UnHandledi = (UNB-LOCi)- (Handledi)
Handling Ratei =(Handledi X 100)/ (UNB-LOCi)

Once the data was collected for each of the releases of Barcode and Zlib libraries,
we plotted the data over time, for Zlib against the release serial number (RSN)
as suggested by Lehman, and for the Barcode Library against calendar time
(number of months/days since first release) following the style of several other
researchers. We then considered whether our plotted data appears to follow
Lehman’s laws of software evolution [11] or not.

5 Observations on the Evolution of Barcode Library and
Zlib

During the analysis of the software systems we have made some interesting
observations. In the following subsection we concentrate on the global systems
and their evolution first. Then we zoom in on the subsystems. The outliers that
may be recognized in the subparts are discussed in more detail. The evaluation
covered releases of the Barcode Library from June 1999 until March 2002, which
contains 9 releases over the period of thirty three months. For Zlib, we considered
43 releases covering a period of about 11 years.

5.1 Overall Growth w.r.t. Size

To begin, Fig. 1(a), shows the overall growth of Barcode Library beginning from
the first version released in June 1999. We can see that over time the size of the
system has increased to meet additional user requirements. We have manually

analyzed the Barcode Library documentation for all of the versions and found
that in most of cases the growth was required to add new functionally to meet
user requirements. Thus later versions have more functional capability, covering
more user needs. In the early days of the Barcode Library there were a number
of releases with fewer new functionalities added, and therefore we can observe
(Fig. 1(a)) a period of several versions with comparatively little growth in size
compared to the first three. However, we see that the growth follows a monotonic
process and therefore we can say that the growth of Barcode Library does follow
Lehman’s 6th Law of continuing growth of system size.

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

Ju
n-

99

Au
g-

99

O
ct
-9

9

Dec
-9

9

Fe
b-

00

Ap
r-0

0

Ju
n-

00

Au
g-

00

O
ct
-0

0

Dec
-0

0

Fe
b-

01

Ap
r-0

1

Ju
n-

01

Au
g-

01

O
ct
-0

1

Dec
-0

1

Fe
b-

02

Release Date/Version

S
iz

e
 i
n
 B

y
te

s

Versions(0.90,0.91,0.92,0.93,0
.94,0.95,0.96,0.97,0.98)

(a) Over Months

0

20000

40000

60000

80000

100000

120000

140000

0 200 400 600 800 1000 1200

No. of Days since initial Release

S
iz

e
 i
n
 B

y
te

s
Versions(0.90,
0.91,0.92,0.93,0.94,0.95,0.96,
0.97,0.98)

(b) Over Days

Fig. 1. Growth of Barcode Over Time (months + days) w.r.t Size of the Released
Versions

This is even clearer in Fig. 1(b), where we have plotted the size data against
the number of days since the first release. We have used our LSF tool to compute
a least squares fit of the data and found that the linear equation Y = 65.92X +
63138.28 where X is the number of days, is a good predictor of Barcode system
size over time. This linear growth is in contrast to the super-linear growth of
Linux, reported in [7], [14], and can be termed continuing growth, Lehman’s 6th

law of evolution.
In Fig. 2, we have created a similar plot for Zlib, but in this case we have

plotted the data against the release serial number (RSN) as suggested by Lehman
rather than time. Here, we also find that system growth continues over time. We
have analyzed the changed log histories of the different versions and also found
that, like Barcode, the growth seems to be primarily due to the addition of more
functionalities to meet additional user requirements.

As we see, even when plotted against RSN, growth of this system also seems
to be liner in nature and can be fitted to the linear equation Y = 6568.53X +
175518.76 with correlation coefficient 0.9668. Therefore, we can say that the
growth of Zlib also follows the Lehman’s 6th law of continuing growth. However,

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 10 20 30 40 50
RSN

S
iz

e
(B

yt
e
s)

Versions

Fig. 2. Growth of Zlib Over RSN w.r.t Size of the Released Version

we can also see that although growth is continuing, occasionally it is very high
compared to other releases, as we also observed in the case of the Barcode Library.
In both cases we found similar growth with respect to size of the development
releases, and both seem to follow Lehman’s 6th law of evolution.

5.2 Growth w.r.t. Number of Files

Measuring growth with respect to the size of released versions might be ques-
tionable in the sense that a system could grow in size without adding new func-
tionalities, for example due to addition of unnecessary lines of code (e.g., cloned
or redudant code added by a poor coder) or a large number of new comments or
blank lines. For this reason recent researchers often use other kinds of metrics,
such as number of modules, number of subsystems, number of classes and so on,
to measure object-oriented source code. As our target systems are written in C
and are quite small in size, we have considered number of files as another of our
metrics.

In Fig. 3(a), the number of files in the releases of the Barcode Library have
been plotted against calendar time. For this system it seems that there has been
little significant growth in the number of files, and only 6 files have been added
over the entire period of evolution from the initial version to the latest version

In Fig. 3(b), we have found more interesting results for Zlib. In this case
we see that the number of files remains relatively constant over all releases,
except for some earlier releases where the size of the system has actually been
decreased over time. In the case of Barcode (Fig. 3(a)), we could say that system
is growing continuously in number of files over time, following the 6th law of
Lehman, but the same is definitely not true in the case of Zlib (Fig. 3(b)) where
it is clear that number of files remains constant over most of the latest releases.
This is very much contrasted with the literature, especially for large open source

0

2

4

6

8

10

12

14

16

18

Ju
n-

99

Aug
-9

9

Oct-
99

Dec
-9

9

Fe
b-

00

Apr
-0

0

Ju
n-

00

Aug
-0

0

Oct-
00

Dec
-0

0

Fe
b-

01

Apr
-0

1

Ju
n-

01

Aug
-0

1

Oct-
01

Dec
-0

1

Fe
b-

02

Release Date/Version

N
o
.

o
f

F
ile

s

Versions(0.90,0.91,0.92,0.93,0
.94,0.95,0.96,0.97,0.98)

(a) Barcode

20

22

24

26

28

30

0 10 20 30 40 50
RSN

N
o

.
o

f
F

il
e

s

Versions

(b) Zlib

Fig. 3. Growth Over Time (Months) w.r.t the Number of Files

systems, where the reported growth has even been super-linear with respect to
the number of modules/subsystems [7], [14]. We therefore decided to consider
other kinds of metrics as well.

5.3 Growth w.r.t. LOC and UNB-LOC

Considering the unusual (lack of) growth in Zlib with respect to the number of
files as shown in Fig. 3(b), we decided that perhaps simply counting the number
of files might not be a good metric for evolution of these systems. When target
systems are very small, perhaps in most cases the number of files remains more or
less the same over the evolution period. We have considered the number of lines
over system releases. As the total number of lines may also contain commented
lines or blank lines, we decided to try observing evolution by considering only
the number of uncommented, non-blank lines of code (UNB-LOC). UNB-LOC
is an old technique for measuring evolution, but we have found that for small
size software systems, especially those are written in non-object-oriented context,
considering the UNB-LOC may be a better or perhaps even the only appropriate
metric for evolutionary growth.

In Fig. 4(a), we have plotted the total lines of code (T-LOC) and total UNB-
LOC (T-ULOC) for the Barcode Library. We have also shown the total UNB-
LOC for the *.c files and *.h files separately. As we see, there is a linear growth
over time except in the case of the *.h (header) files. Our main concern is the
T-ULOC of the releases and we see that the growth of this curve is a good fit
to the linear equation Y = 44.55X + 1115. This leaves little doubt that this
measure of growth of releases of this system seems to follow Lehman’s 6th law
of evolution The LOC and UNB-LOC (ULOC for short) for Zlib have also been
plotted in Fig. 4(b) against RSN and we can observe the same linear nature
of continuing growth. In the case of the UNB-LOC curve, the linear equation

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Ju
n-

99

Aug
-9

9

O
ct
-9

9

Dec
-9

9

Fe
b-

00

Apr
-0

0

Ju
n-

00

Aug
-0

0

O
ct
-0

0

Dec
-0

0

Fe
b-

01

Apr
-0

1

Ju
n-

01

Aug
-0

1

O
ct
-0

1

Dec
-0

1

Fe
b-

02

Release Date/Version

N
o

.
o

f
L

in
e

s

T-ULOC

T-LOC

ULOC(*.c)

ULOC(*.h)

(a) Barcode

0

2000

4000

6000

8000

10000

12000

14000

0 10 20 30 40 50RSN

N
o

.
o

f
L

in
e

s

Versions(LOC)

Versions(ULOC)

(b) Zlib

Fig. 4. Growth Over Time (months) w.r.t. T-LOC and UNB-LOC

Y = 103.41X+3356.25 is found to fit with correlation coefficient 0.977, definitely
consistent with Lehman’s 6th law of evolution.

5.4 Handled and Unhandled UNB-LOC for the Barcode Library

Until now we have discussed only the 6th law of evolution. However, what fraction
of the system is handled or unhandled is also a major factor in software evolution
and is directly related to some of the Lehman’s laws. In this section we have
studied what fraction of the system is handled or remains unhandled over time,
in order to estimate the changing rate and growing rate of the system.

0

500

1000

1500

2000

2500

3000

Ju
n-

99

Aug
-9

9

Oct-
99

Dec
-9

9

Feb
-0

0

Apr
-0

0

Ju
n-

00

Aug
-0

0

Oct-
00

Dec
-0

0

Feb
-0

1

Apr
-0

1

Ju
n-

01

Aug
-0

1

Oct-
01

Dec
-0

1

Feb
-0

2

Release Date

U
nc

om
m

en
te

d
LO

C

Total ULOC

Handled ULOC

Unhandled ULOC

Fig. 5. Handled and Unhandled UNB-LOC Over Time (months) for Barcode.

In Fig. 5, we have plotted the ULOC, the handled ULOC, and unhandled
ULOC for the total system. We have found interesting results for the case of
handled ULOC. We see that except for some early releases, the handled ULOC
consistently increased for a time and since then has decreased significantly. We
can also see the same effect in the corresponding unhandled ULOC curve. The
handled ULOC and unhandled ULOC curves can be fitted with the linear equa-
tions Y = 11.58X + 892.20 and Y = 36.48X + 519.19 respectively.

One interesting observation to note here is that there is no change from
version 0.93 to version 0.94 (during the time period October 1999 to December
1999), as we see that the unhandled ULOC curve touches the total ULOC curve
and handled ULOC curve is at the X-axis. It would be interesting to find out
how and why version 0.94 evolved from version 0.93.

Next, in Fig. 6 we have plotted the number of files that are changed and
newly added over time (although we know number of files is not a good metric
for such small size software systems).

0

1

2

3

4

5

6

7

8

9

10

Ju
l-9

9

Sep
-9

9

Nov
-9

9

Ja
n-

00

Mar
-0

0

May
-0

0

Ju
l-0

0

Sep
-0

0

Nov
-0

0

Ja
n-

01

Mar
-0

1

May
-0

1

Ju
l-0

1

Sep
-0

1

Nov
-0

1

Ja
n-

02

Mar
-0

2

Release Date (from 2nd Version)

N
o.

 o
f F

ile
s

Changed Files

Added Files

Fig. 6. Changed/Added Files Over Time(months) of Barcode.

We see that very few files are added over time and this adding phenomenon
is also decreasing in the latter versions. However, initially the number of changed
files is more than in later versions, and the number is also decreasing, following
some properties of Lehman’s 1st and 5th laws. We know Lehman’s 1st law pre-
dicts continuing change and the 5th law concerns conservation of familiarity. To
focus on these two laws, we have plotted the changing rate and growing rate of
Barcode in Fig. 7 by taking into account the handled ULOC. In this Fig. 7, we
see that the Barcode Library system is changing continuously over time, with
some exceptions in the earlier versions, especially in the case of version 0.94
from version 0.93. Therefore, we can say that this changing nature of Barcode
Library follows the Lehman’s 1st law. On the other hand, both the changing

0
10
20
30
40
50
60
70
80
90

100

Ju
l-9

9

Oct-
99

Ja
n-

00

Apr
-0

0

Ju
l-0

0

Oct-
00

Ja
n-

01

Apr
-0

1

Ju
l-0

1

Oct-
01

Ja
n-

02

Apr
-0

2

Release Date(from 2nd Version)

P
er

ce
nt

ag
e

U
LO

C

Growing Rate

Changing Rate

Fig. 7. Growing Rate and Changing Rate of Barcode Over Time (months).

rate and growing rate tend to decline over time which lead us to the 5th law of
evolution, the Conservation of Familiarity. However, as we mentioned earlier,
we really could not predict what actually added/modified to version 0.94 from
its previous version 0.93 and therefore, in the next subsection, we go into more
depth on the Barcode Library by observing its evolution at the module level.

5.5 Module Level Observations of the Barcode Library

As we know from Section 3, five modules are considered in the Barcode Library
corresponding to parts of the two main purposes of the library. To observe the
evolution of the module level, we have plotted the UNB-LOC for each of the five
modules of the system over time in Fig. 8. We see that except for the Header File
module, all others are increasing in the number of UNB-LOC over time, following
Lehman’s 6th law of continuing growth and signaling the 1st law of continuing
change. We have found that the most promising module is the Basic Encoding
Module which is increasing more rapidly over time than any other module with
respect to both size and rate of growth. We have also noticed that except for the
Basic Encoding Module, all other modules tend to decline in incremental growth
which brings us in mind of Lehman’s 5th law of evolution on the module level
also. We can therefore say that with few exceptions, the evolution of the Barcode
Library modules follows Lehman’s 1st, 5th and 6th laws of evolution well.

To be sure about our predictions, in Fig. 9 we have plotted the percentage
UNB-LOC of the modules with respect to the total system over time. Here we
see that except for the Advanced Encoding Module, all other modules either
change in parallel or tend to decline in incremental size with respect to the
percentage of the total system. A parallel curve, like the later releases of the
Basic Encoding Module, implies that this module is growing at the same rate as
the total system. However, we can also see that except for the Advanced Encoding

0

200

400

600

800

1000

1200

Ju
n-

99

Aug
-9

9

Oct-
99

Dec
-9

9

Feb
-0

0

Apr
-0

0

Ju
n-

00

Aug
-0

0

Oct-
00

Dec
-0

0

Feb
-0

1

Apr
-0

1

Ju
n-

01

Aug
-0

1

Oct-
01

Dec
-0

1

Feb
-0

2

Release Date

U
nc

om
m

en
te

d
no

n-
bl

an
k

LO
C

Front-End
Module

Output
module

Basic
Encoding
Module

Advanced
Encoding
Module

Header
Files'
Module

Fig. 8. UNB-LOC of the Modules of Barcode Over Time.

Module, all others are decreasing in their rate with respect to the whole system,
demonstrating the predictions of Lehman’s 5th law.

0

10

20

30

40

50

60

Ju
n-

99

Aug
-9

9

Oct-
99

Dec
-9

9

Feb
-0

0

Apr
-0

0

Ju
n-

00

Aug
-0

0

Oct-
00

Dec
-0

0

Feb
-0

1

Apr
-0

1

Ju
n-

01

Aug
-0

1

Oct-
01

Dec
-0

1

Feb
-0

2

Release Date

P
er

ce
nt

ag
e

of
 t

ot
al

 s
ys

te
m

 U
LO

C

Front-End
Module

Output
Module

Basic
Encoding
Module

Advanced
Encodng
Module

Header
Files'
Module

Fig. 9. Percentage of ULOC of the Modules w.r.t the Total System Over Time.

We mentioned earlier the problem with version 0.94, where we could not
figure out how or what had actually been changed or added in version 0.94
from version 0.93. We have assumed that something might happened in the
Basic Encoding Module as this seems the most promising module among the
others. Therefore, we have done a more in-depth focus on this module by plot-
ting its individual files in Fig. 10. As we can see from this figure, files code39.c
and code128.c are growing over time, while ean.c is not. We can also see that

0

100

200

300

400

500

600

Ju
n-

99

Aug
-9

9

Oct-
99

Dec
-9

9

Feb
-0

0

Apr
-0

0

Ju
n-

00

Aug
-0

0

Oct-
00

Dec
-0

0

Feb
-0

1

Apr
-0

1

Ju
n-

01

Aug
-0

1

Oct-
01

Dec
-0

1

Feb
-0

2

Release date

U
nc

om
m

en
te

d
no

n-
bl

an
k

LO
C

code128.c

code39.c

ean.c

Fig. 10. File-Level Growth of the Basic Encoding Module Over Time of Barcode

code128.c has a smoother growth than the others, which helps us imagine that
code128.c might be one of the main files of this module, or even of the whole
system (since Basic Encoding Module is the most growing module and code128.c
is in this module). Perhaps it changes over versions at a smooth rate and most
of the system changes are being made in this file.

However, we still cannot predict clearly how and why version 0.94 evolved
from version 0.93 as yet, even with these file level observations. With our strong
belief that evolution might be associated with code128.c (as most promising file,
in most growing module), we have considered the size of this file over versions
0.93 to 0.94 and found that there are only 2 bytes of difference between these
two files. Even more interesting, there are only 2 bytes of overall size difference
between versions 0.93 and 0.94. For our further interest, we have used the Linux
command diff to see the real differences between code128.c of version 0.93 and
that of version 0.94, and we have found that a few lines of code have been
replaced with the same number of lines but with more complicated code in the
same lines of code128.c in version 0.94 from version 0.93. We have also found
that some comments are added with the same lines.

5.6 Observing the Complexity

Complexity of a system is always a major concern. Lehman also has the 2nd law
of evolution, relating to the complexity of the system. The 2nd law states that as
a system evolves the complexity of the system increases unless work is done to
maintain it. As we know, since the C language has a single flat namespace, the
complexity of a C program depends largely on the number of global functions,
variables and macros (unlike C++ or Java). We have counted the total number
of global functions, variables and macros for each of the releases of Barcode and
Zlib using Ctags [5]. We have plotted this for Barcode Library over time in Fig.
11(a) and that of Zlib against RSN in Fig. 11(b)).

0

20

40

60

80

100

120

140

160

180

Ju
n-

99

Aug
-9

9

O
ct
-9

9

Dec
-9

9

Fe
b-

00

Apr
-0

0

Ju
n-

00

Aug
-0

0

O
ct
-0

0

Dec
-0

0

Fe
b-

01

Apr
-0

1

Ju
n-

01

Aug
-0

1

O
ct
-0

1

Dec
-0

1

Fe
b-

02

Release Date

#
 o

f
g

lo
b

a
l
fc

n
s
,
v
a

rs
,
a

n
d

 m
a

c
ro

s

Versions(0.90,0.91,0.92,0.93,0.94,
0.95,0.96,0.97,0.98)

(a) Barcode

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50

RSN

#
 o

f
g

lo
b

a
l

fc
n

s
,

v
a
rs

 a
n

d
 m

a
c
ro

s

Versions

(b) Zlib

Fig. 11. Number of Global Functions, Variables and Macros Over Time of Re-
leases

From Fig. 11(a), it can be seen that as Barcode has evolved, the complexity of
the system has increased, following the Lehman’s 2nd law of evolution. We have
also found a good fit to the linear equation Y = 2.22X +98.62 using LSF, which
indicates that the complexity of the system has been increased with roughly
linear growth over the months since its first release in June, 1999.

We can also observe more or less same behavior in the case of Zlib in Fig.
11(b). Here it can be seen that initially the complexity of the system increases,
consistent with the 2nd law of evolution, and then later special work has been
done to control the complexity. As we result, after the 21st release, the complexity
of the system decreased drastically, and then again increased gradually over the
next releases, again following Lehman’s 2nd law of evolution.

6 Conclusion

In this work, the evolution behavior of two small scale open software systems
has been observed. It has been found that the evolution of these small scale
software systems is consistent with Lehman’s laws of software evolution, unlike
the reported evolution of larger open source software systems, which have been
reported to show evolution behaviors inconsistent with Lehman’s laws. In our
study we have mainly focused on Lehman’s 1st, 2nd, 5th and 6th laws of evolution
and found that for the most part the evolution of both the Barcode Library and
Zlib follows these laws with some minor exceptions.

While more research would be required to make any firm conclusions, these
observations lead us to believe that perhaps small size open source software in
general may follow Lehman’s laws of evolution more consistently than do larger
systems such as those reported by Robles et at. [14] and Godfrey et al. [7].
However, there are critical differences in our studies, including both that Robles
and Godfrey have worked with very large scale open source software systems

developed by very large groups of people, and that they have concentrated on
the 4th law of evolution. Although we have not specifically focussed on the 4th

law, from the observations of this case study, it is however clear that neither
Barcode Library nor Zlib has super-linear growth in their evolution and hence,
it can be concluded that the evolution of both Barcode Library and Zlib does
follow Lehman’s 4th law of evolution in some sense.

References

1. The Barcode: http://www.gnu.org/software/barcode/barcode.html
2. Burd, E., Munro, M.: Evaluating the evolution of a C application. Internation

Workshop on Principles of Software Evolution(1999), pp. 401-410, Fukuoka, Japan.
3. Capiluppi, A.:Models for the evolution of os projects. Proceedings of the Inter-

national Conference on Software Maintenance(2003), pp. 65-74, Amsterdam, The
Netherlands.

4. Capiluppi, A., Morisio, M., Lago, P.: Evolution of understandability in oss projects.
Proceedings of the 8th European Conference on Software Maintenance and Reengi-
neering(2004),pp. 58-66, Tampere, Finland.

5. The Ctags: http://www.die.net/doc/linux/man/man1/ctags.1.html
6. Gall, H., Jazayeri, M., Klösch, R., Trausmuth, G.: Software evolution observations

based on product release history. Proceedings of the International Conference on
Software Maintenance(1997), pp. 160-169, Berlin, Germany.

7. Godfrey, M. W., Tu, Q.: Evolution in Open Source software: A case study. Proceed-
ings of the International Conference on Software Maintenance (2000), pp. 131-142,
San Jose, California.

8. Krajewski, J.: QCR - A Methodology for Software Evolution Analysis. Master
Thesis(2003), Technical University of Vienna.

9. Lehman, M. M., Belady, L. A.: Program Evolution: Processes of Software Change,
Academic Press, 1985.

10. Lehman, M. M., Perry, D. E., Ramil, J. F.: Implications of evolution metrics on
software maintenance. Proceedings of the International Conference on Maintenance
(1998), pp. 208-217, Bethesda, Maryland.

11. Lehman, M., Ramil, J., Wernick, P., Perry, D.: Metrics and laws of software evolu-
tion - the nineties view. Proceedings of the Fourth International Software Metrics
Symposium(1997), Portland, Oregon.

12. Lehman, M. M., Ramil, J. F.: Rules and tools for software evolution planning and
management. Annals of Software Engineering, 11(2001):15-44.

13. Paulson, J. W., Succi, G., Eberlein, A.: An empirical study of open-source and
closed-source software products. Transactions on Software Engineering, 30 (4): 246-
256, April 2004.

14. Robles, G., Amor, J. J., Gonzalez-Barahona, J. M., Herraiz, I.: Evolution and
Growth in Large Libre Software Projects. Proceedings of the International Work-
shop on Principles of Software Evolution(2005), pp.165-174, Lisbon, Portugal.

15. Roelofs, G., Gailly, J., Adler, M.: The Zlib home page. http://www.Zlib.net/
16. Salon: http://www.salon.com/tech/feature/
17. Succi, G., Paulson, J., Eberlein, A.: Preliminary results from an empirical study

on the growth of open source and commercial software products. In EDSER-3
Workshop(2001), co-located with ICSE 2001, pp.14-15 Toronto, Canada.

18. The Numlines home page. http://www.gammadyne.com/cmdline.htm, 2005

