
Towards a Mutation-Based Automatic Framework
for Evaluating Code Clone Detection Tools

Chanchal K. Roy James R. Cordy
School of Computing, Queen’s University

Kingston, ON, Canada K7L 3N6
{croy, cordy}@cs.queensu.ca

ABSTRACT
In the last decade, a great many code clone detection tools
have been proposed. Such a large number of tools calls for
a quantitative comparison, and there have been several at-
tempts to empirically evaluate and compare many of the
state-of-the-art tools. However, a recent study shows that
there are several factors that could influence the the valid-
ity of the results of such comparisons. In order to overcome
the effects of such factors (at least in part), in this student
poster paper we outline a mutation-based controlled frame-
work for evaluating clone detection tools using edit-based
mutation operators that model cloning actions. While the
framework is not yet completely implemented and as yet we
do not have experimental data, we anticipate that such a
framework will provide a useful contribution to the commu-
nity by providing a more solid objective foundation for tool
evaluation.

Categories and Subject Descriptors
D.2.7 [Distribution, Maintenance, and Enhancement]:
Restructuring, reverse engineering, and reengineering; D.2.5
[Testing and Debugging]: Testing tools

General Terms
Experimentation, Measurement

Keywords
Evaluation, Clone Detection Techniques, Mutation Analysis,
Framework, Software Engineering, Maintenance.

1. INTRODUCTION
Copying a code fragment and reusing it by pasting with or

without minor modifications is a common practice in soft-
ware development, and as a result software systems often
have sections of code that are similar, called software clones
or code clones. Previous research shows that a significant
fraction (between 7% and 23%) of the code in a software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
C3S2E-08 2008 May 12-13, Montreal [QC, CANADA]
Copyright c© 2008 ACM 978-1-60558-101-9/08/05 ...$5.00.

system has been cloned [3]. While such cloning is often in-
tentional [10] and not necessarily harmful [9], a difficulty
introduced by such duplicated code is that when a bug is
detected in a cloned code fragment, all fragments similar to
it should be investigated for the same bug [12]. Moreover,
when enhancing or adapting a software system, duplicated
code can multiply the work to be done [8].

Fortunately, several (semi-)automated techniques for de-
tecting code clones have been proposed (see [13, 14] for a
comprehensive summary of all the available techniques) and
there have been a number of comparison and evaluation
studies to relate them [4, 6, 16, 5, 11] in different contexts.
These studies have not only provided significant contribu-
tions to the clone detection research, but have also exposed
how challenging it is to compare different tools, due to the
diverse nature of the detection techniques, the lack of stan-
dard similarity definitions, the absence of benchmarks, the
diversity of target languages, and the sensitivity to tuning
parameters [2].

The most recent study, by Bellon et al. [4], provides a
comprehensive quantitative evaluation of six clone detectors
in detecting known observed clones in a number of open
source software systems written in C and Java. However,
even in that careful study, only a small proportion of the
clones were oracled, and a number of other factors have
been identified as potentially influencing the results [2]. The
general lack of evaluation is exacerbated by the fact that
there are no agreed upon evaluation criteria or representa-
tive benchmarks. Finding such universal criteria is difficult,
since techniques are often designed for different purposes
and each has its own tunable parameters.

In an attempt to compare all clone detection techniques
more uniformly, independent of tool availability, implemen-
tation limitations or language, in an another study we have
taken a predictive, scenario-based approach [14]. We have
designed a small set of hypothetical program editing scenar-
ios representative of typical changes to copy/pasted code.
Based on these hypothetical scenarios, we have estimated
how well the various clone detection techniques may perform
based on their published properties. In order to estimate
maximal potential, we have also assumed the most lenient
settings of any tunable parameters of the techniques. Thus,
our that study is not an actual evaluation, but rather an at-
tempt at an overall picture of the potential of the techniques
in handling clones resulting from each of the scenarios.

In order to automatically compare and evaluate the tech-
niques and tools in a more realistic setting, in this student
poster paper we have outlined a mutation-based evaluation

framework which is still under implementation. Mutation
analysis has been used in the testing community for over
25 years and has proven to be a useful comparison metric
for assessing and improving multiple test suites [1]. We be-
lieve that a mutation-based testing approach can also play
an important role in evaluating clone detection tools, if we
can define a set of mutation operators that model cloning
for a given language. Thus, in this paper, we begin by out-
lining an editing taxonomy for code cloning from which a set
of mutation operators for cloning can be derived, and then
propose an evaluation framework based on these operators
that can be used to evaluate and compare clone detection
tools using clone mutation.

The rest of this paper is organized as follows. After in-
troducing mutation operators for cloning in the C language
in Section 2, we outline our proposed framework in Section
3. In Section 4 we provide a brief discussion of existing
evaluation experiments and finally, Section 5 concludes the
paper.

2. MUTATION OPERATORS FOR CLONING
For any mutation-based analysis, availability of a set of

representative mutation operators is a primary concern. While
there are numerous mutation generators available for gen-
erating potential “bugs” in various languages [1], mutation
operators for code cloning have to our knowledge not been
studied so far. In this section, we attempt to provide an
editing taxonomy of different code clone types from which a
set of mutation operators for code cloning can be derived to
support the mutation analysis of the next section.

In mutation testing analysis, mutation operators are tar-
geted to change the original code so as to introduce new
potential bugs. Similarly, mutation operators for cloning
are those editing activities that create new clones when ap-
plied to copy/pasted code. In our earlier study [14], we have
proposed 16 different (sub-)types of clones by refining the
available clone types from the literature [13]. Each of the 16
clone types (e.g., changes in format, renaming of identifiers,
etc.) potentially reflect 16 kinds of mutation operators for
cloning (Our another recent study [15] shows that there are
actually many such clone types in real systems).

However, in that study only single-level editing operations
are applied to the copied code. In practice, a copied code
fragment may undergo several kinds of editing. Consider the
editing taxonomy of Figure 1 where the original segment is
marked with Original Fragment. While the top-right code
segment has undergone only one kind of editing (a format-
ting change), the bottom-right segment has undergone sev-
eral different kinds of editing operations. If we follow the
solid arrows in the taxonomy from the original fragment, we
can determine the editing operations applied to that segment
(Formatting change => systematic renaming of identifiers
=> expressions for parameters => small insertion within a
line => insertion of new lines => reordering of some state-
ments => control replacement). Thus, there should be clone
mutation operators not only for each of the editing opera-
tions, but also for combinations of them. We are using TXL
[7] for generating the mutation operators as a sequence of
source transformations to allow for this.

3. PROPOSED FRAMEWORK
The conceptual diagram of our proposed mutation-based

framework is shown in Figure 2. While this framework is

mutation-based and follows the basic principle of mutation
analysis, there are several additional factors adapted and
added to make it suitable for clone detection analysis. In
the following we discuss the different components/phases of
the framework in brief.

Select Code Base: Selecting the target code base is the
first step of the framework. One needs to determine which
code bases would be meaningful for such an evaluation in
terms of subject tools and the size of the code. In the first
instance, we plan to use the four C systems of the Bellon et
al. [4] study. C is supported by most of the clone detection
tools, and we are targeting our clone mutation operators at
C systems at that moment. The size of these systems is also
reasonable for the framework.

Extract Exact Clones: After selecting a subject code
base, one needs to detect all the exact clones of that system
using any good clone detection technique. The detected
clones may be manually verified to gain confidence in the
identified clones, although fortunately most tools detect ex-
act clones with few or no false positives.

Annotate Exact Clones: After identifying the exact
clones in the code base, a TXL [7] source transformation is
used to annotate the exact clone pairs/classes in the orig-
inal code. The output of this phase is the annotated code
base where annotations mark the clone relation between the
clones pairs/classes.

Generate Clone Mutants: A TXL-based Mutation Gen-
erator (cf. Section 2) is then randomly applied to the an-
notated code base. Mutation is only applied to one of the
annotated code segments at a time and one mutant version
of the code base is created (say mutant 1). In this way,
thousands of mutant versions of the annotated code base
are created by applying the mutation operators for cloning.
Each mutated clone pair/class is marked and stored in a
database with the identity of the applied mutation operator
for later analysis.

Apply the Subject Tools to the Mutant Versions:
All the subject clone detection tools are used to detect clones
(possibly with different settings of the different tools) in each
of the mutant versions.

Determine If Mutated Clone Pair/Class is Detected
or Not: For each of the tools and each of the mutant ver-
sions, the framework will determine whether the mutated
clone pair/class has been detected by the corresponding tool.
If the mutated clone pair/class is detected, we say that the
tool has performed well for the clone type represented by
the mutation operator.

Analyze and Display Results: Once all the n different
mutant versions of the code base are processed by all the
k subject clone detection tools, a comparison of the results
for the different mutation operators (hence, for the different
clone types) for different tools is displayed to the user. While
in this first instance these results will be based on only one
subject system per run, it is of course possible to provide
more comprehensive results by observing several different
subject systems.

4. RELATED WORK
Although as yet there is no mutation-based evaluation

framework available, there are several experiments that com-
pare and evaluate clone detection tools/techniques. In this
section, we provide a summary of the available tool compar-
ison experiments from the literature.

void calculate(int m) {
int s = 0;
int p =1; // C1
for (int j=1; j<=m; j++){
 s = s + j; //C2
 p = p * j;
 foo(s, p); } } //C3

Original Fragment

void calculate(int m) {
int s=0;
int p =1; //C1
for (int j=1; j<=m; j++)
 { s=s+j; //C2
 p= p*j;
 foo(s, p); //C3
 } }

void calculate(int m) {
int s = 0;
int p =1; // C1_mod
for (int j=1; j<=m; j++)
 { s = s + j; //C2_mod
 p = p * j; //C_new
 foo(s, p); //C3
 } }

void sumTimes(int n) {
float sum=0.0;
double product =1.0; // C1
for (int i=1; i<=n; i++) {
 sum=sum + i; //C2
 product = product * i;
 fun(sum, product); }} //C3

void sumTimes (int n) {
float sum=0.0; //C0
double product =1.0; // C1’
for (int i=1; i<=n; i++) {
 sum=sum + i; //C2’’
 product = product * i;
 fun(product, sum); } }

void sumTimes (int n) {
float sum=0.0;
double product =1.0; // C1
for (int i=1; i<=n; i++) {
 sum=sum + (i * i) ; //C2
 product = product * (i * i);
 fun(sum, product); }} //C3

Renaming

Small insertion/deletions within a line

Small insertion within a line Small deletion within a line

void sumTimes (int n) {
float sum=0.0;
double product =1.0; // C1
for (int i=1; i<=n; i++) {
 sum=sum + (i * i) ; //C2
 product = product * (i * i);
 fun(sum, product, n); }} //C3

void sumTimes (int n) {
float sum=0.0;
double product =1.0; // C1
for (int i=1; i<=n; i++) {
 sum=sum + (i * i) ; //C2
 product = product * (i * i);
 fun(sum) ; }} //C3

Further editing of whole lines

Insert lines

Delete lines

Modify whole lines

void sumTimes (int n) {
float sum=0.0;
double product =1.0; // C1
for (int i=1; i<=n; i++)
 if (i % 2==0) {
 sum=sum + (i * i) ; //C2
 product = product * (i * i);
 fun(sum, product, n); }} //C3

void sumTimes (int n) {
float sum=0.0;
double product =1.0; // C1
for (int i=1; i<=n; i++) {
 sum=sum + (i * i) ; //C2
 //line deleted
 fun(sum, product n); }}//3

void sumTimes (int n) {
float sum=0.0;
double product =1.0; // C1
for (int i=1; i<=n; i++) {

 if (i % 2==0) sum += (i * i) ;
 product = product * (i * i);

 fun(sum, product, n); }} //C3

Reordering of statements
AND control replacements

Control replacements Reordering of other stats Reordering of declaration statements

void sumTimes (int n) {
float sum=0.0;
double product =1.0; // C1
for (int i=1; i<=n; i++)
 if (i % 2==0) {
 fun(sum, product, n); //C3
 product = product * (i * i);
 sum=sum + (i * i) ; }} //C2

void sumTimes (int n) {
double product =1.0; // C1
float sum=0.0;
for (int i=1; i<=n; i++)
 if (i % 2==0) {
 sum=sum + (i * i) ; //C2
 product = product * (i * i);
 fun(sum, product, n); }} //C3

void sumTimes (int n) {
double product =1.0; // C1
float sum=0.0;
int i=0;
while (i <= n)
 if (i % 2==0) {
 sum=sum + (i * i) ; //C2
 product = product * (i * i);
 fun(sum, product, n); //C3
 i = i +1; } }

Reuse by copy & paste Formatting change

Systematic renaming

Comments and whitespace change

Expressions for parameters

Figure 1: Taxonomy of Editing Scenarios for Different Clone Types

One of the first experiments was conducted by Bailey and
Burd [6] where they compared three state-of-the-art clone
detection and two plagiarism detection tools. First they
validated all the clone candidates of the subject applica-
tion obtained with all the techniques of their experiment. A
human oracle was then used to compare the different tech-
niques in terms of several metrics to measure various aspects
of the found clones.

Although they were able to verify all the clone candidates,
the limitations of the case study in terms of system quan-
tity and size makes their findings questionable. Moreover,
the intention of their analysis was to assist in preventative
maintenance tasks, which may also have had an influence in
validating the candidate clones.

Considering the limitations of Burd and Bailey’s study,
Bellon et al. conducted a larger tool comparison experi-
ment [4] with the same three clone detection tools used in

Burd and Bailey’s study and three additional clone detec-
tion tools. They also used a more diverse set of software sys-
tems, 4 Java and 4 C systems totalling almost 850KLOC.
As in the study of Burd and Bailey, a human oracle vali-
dated the candidate clones from all the tools. While their
study is the most extensive to-date, only a small propor-
tion of the clone candidates were oracled and several other
factors might have influenced the results [2]. Although this
study was later extended by Koschke et al. [11] with proto-
type implementations of several tools, they did not address
anything to overcome the limitations of Bellon et al.’s study.

Rysselberghe and Demeyer [16] evaluate three represen-
tative clone detection techniques and provide comparative
results in terms of portability, kinds of duplication reported,
scalability, number of false matches, and number of useless
matches. However, they have used small/medium size (un-
der 10KLOC) cases and prototype implementations of the

Use any clone
detection tool
to detect exact
match clones.

Manually
verify if

necessary

Exact match
clones and

their
relationships

Use TXL to
annotate the
exact clones

and their
relationships

(clone
pairs/classes)

Code Base
with

annotations
of exact
clones

Code
Base

Subject Tool k

Subject Tool 2

Subject Tool 1

Mutant n

Mutant 2

Mutant 1

Found clones
by Tool 1 on

Mutant 2

Found clones
by Tool 1 on

Mutant 1

Examine whether the mutated
clone pair/class of mutant 2 has
been detected by tool 1 or not.

Found clones
by Tool 1 on

Mutant n

Examine whether the mutated
clone pair/class of mutant n has
been detected by tool 1 or not.

Statistical
analysis for different
mutated clone pairs

detected/not detected by
different tools and display

comparative
results.

Examine whether the mutated
clone pair/class of mutant 1 has
been detected by tool 1 or not.

Apply TXL
Mutation

Generator to
annotated exact

clones

Get original source

Get mutated database

Figure 2: The Proposed Mutation-Based Evaluation Framework

tools instead of using the actual tools. Moreover, rather
than quantitative evaluation of the detection techniques,
their intention was to determine the suitability of the clone
detection techniques for a particular maintenance task (e.g.,
refactoring).

Another interesting study has been conducted by Bruntink
et al. [5] where several clone detection techniques are evalu-
ated in terms of finding cross-cutting concerns in C programs
with homogeneous implementations.

5. CONCLUSION
Existing studies for empirically evaluating clone detection

tools have had several limitations and thus, cannot provide
a convincing comparative study. In this student poster pa-
per, we propose a new approach for evaluating clone de-
tecting tools in a controlled way by borrowing an estab-
lished technique from the testing community – mutation-
based analysis. Although we have not yet completed the im-
plementation of the framework, we are confident that such
a framework can provide concrete and accurate compara-
tive results for different tools in finding intentionally created
code clones. In this proposed framework, it is not practical
to work with large scale code bases (as thousands of differ-
ent mutated versions of the code base are fed into the clone
detection tools). Thus, in future we also plan to conduct
another mutation/injection-based controlled experiment. In
that framework, thousands of mutated clone pairs/classes
generated from the editing taxonomy (Figure 1) will be in-
jected to large systems. Clone detection tools will then be
evaluated how well and how fast they can detect the known
injected clones.

6. ACKNOWLEDGEMENTS
The authors would like to thank the three anonymous re-

viewers for their valuable comments in improving the paper.
This work is supported by the Natural Sciences and Engi-
neering Research Council of Canada.

7. REFERENCES
[1] J. H. Andrews, L. C. Briand and Y. Labiche. Is

Mutation an Appropriate Tool for Testing
Experiments? In ICSE, pp. 402-411, 2005.

[2] B.S. Baker. Finding Clones with Dup: Analysis of an
Experiment. IEEE TSE, Vol. 33(9):608-621, 2007.

[3] B. Baker. On Finding Duplication and
Near-Duplication in Large Software Systems. In
WCRE, pp. 86-95, 1995.

[4] S. Bellon, R. Koschke, G. Antoniol, J. Krinke and E.
Merlo. Comparison and Evaluation of Clone Detection
Tools. IEEE TSE, Vol. 33(9): 577-591, 2007.

[5] M. Bruntink, A. Deursen, R. Engelen and T. Tourwe.
On the Use of Clone Detection for Identifying
Crosscutting Concern Code. IEEE TSE, 31(10):
804-818, 2005.

[6] E. Burd and J. Bailey. Evaluating Clone Detection
Tools for Use during Preventative Maintenance. In
SCAM, pp. 36-43, 2002.

[7] J.R. Cordy. The TXL source transformation language.
Science of Computer Programming, 61(3):190-210, 2006.

[8] J. Johnson. Visualizing Textual Redundancy in Legacy
Source. In CASCON, pp. 171-183, 1994.

[9] C. Kapser and M. Godfrey. “Cloning Considered
Harmful” Considered Harmful. In WCRE, pp. 19-28,
2006.

[10] M. Kim and G. Murphy. An Empirical Study of Code
Clone Genealogies. In FSE, pp. 187-196, 2005.

[11] R. Koschke, R. Falke and P. Frenzel. Clone Detection
Using Abstract Syntax Suffix Trees. In WCRE, pp.
253-262, 2006.

[12] Z. Li, S. Lu, S. Myagmar and Y. Zhou. CP-Miner:
Finding Copy-Paste and Related Bugs in Large-Scale
Software Code. IEEE TSE, 32(3):176-192, 2006.

[13] C.K. Roy and J.R. Cordy. A Survey on Software
Clone Detection Research. School of Computing TR
2007-541, Queen’s University, 115 pp., 2007.

[14] C.K. Roy and J.R. Cordy. Scenario-Based Comparison
of Clone Detection Techniques. In ICPC, 10 pp., 2008
(to appear).

[15] C.K. Roy and J.R. Cordy. NICAD: Accurate
Detection of Near-Miss Intentional Clones Using
Flexible Pretty-Printing and Code Normalization. In
ICPC, 10 pp., 2008 (to appear).

[16] F.V. Rysselberghe and S. Demeyer. Evaluating Clone
Detection Techniques. In ELISA, 12pp., 2003.

