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Abstract—With the increasing use of Simulink modeling in
embedded system development, there comes a need for effective
techniques and tools to support managing these models and
their related artifacts. Because maintenance of models makes
up such a large portion of the cost and effort of the system as a
whole, it is increasingly important to ensure that the process of
managing models is as simple, intuitive and efficient as possible.
Part of model management comes in the form of impact analysis
- the ability to determine the impact of a change to a model on
related artifacts such as test cases and other models. This paper
presents an approach to impact analysis for Simulink models,
and a tool to implement it (SimPact). We validate our tool as
an impact predictor against the maintenance history of a large
set of industrial models and their tests. The results show a high
level of both precision and recall in predicting actual impact of
model changes on tests.

I. INTRODUCTION

Simulink [3] is a graphical modeling technology used to
create models, consisting of blocks, subsystems, lines and
embedded code, that are used to simulate real world systems.
Simulink is used to model systems for early testing and
analysis, and ultimately is capable of generating the source
code that will be run on embedded control units (ECUs).

Impact analysis refers to the art and science of determin-
ing which software elements may affect one another when
changed [4]. Essentially, the goal is to determine the impact
of a given change on the artifact and its related artifacts.

Impact analysis is part of the larger are of model manage-
ment, which refers to practices associated with managing the
complexities that come from software modeling. Model-driven
engineering (MDE) relies heavily on models as a primary
artifact, and brings with them a large number of other issues
related to meta-models, model-based tests, model transforma-
tions, and multiple types of related models. Maintenance is
increasingly challenging when it comes to models, because
there are many more artifacts to deal with, including model-
based tests, the main focus of our work.

The goal of this work is to produce algorithms and tools for
impact analysis on Simulink models that can provide immedi-
ate, useful and relevant feedback in an industrial application.

This paper makes the following contributions:
• A method for determining the potential impact of changes

to Simulink models on their test cases
• An implementation of the above using static and inter-

active model analysis to identify potential impact on test
cases directly in the test files

• Industrial validation of the above on real-world automo-
tive models provided by our industry partner

II. RELATED WORK

A. Evolving Simulink Models and Tests
It is important to understand the relationship between these

artifacts in the Simulink domain. An earlier study [9] high-
lighted the existence of a co-evolution relationship between
Simulink models and their tests (with a correlation value of
r = 0.9, p < 0.01), which provides the motivation to examine
these relationships further using a dedicated impact analysis.

B. Model Management
Work in model management focuses on different combina-

tions of model artifacts, such as managing models and meta-
models, or models and their model-based tests. Early explo-
ration of the Software Model Management (SMM) problem
was presented by Salay et. al [12]. Their work focuses on the
management of large groups of models, and the requirement
to merge these models. Particularly, the authors present their
Eclipse-based tool framework for SMM. After realizing that
manually tracking changes when there is significant overlap
of artifacts is increasingly difficult as the number of artifacts
increase, MMINT, a graphical tool for interactive model
management [13] was created.

One use case of model management addressed model man-
agement for regulatory compliance [8]. This work looked at
the requirements and regulations set out by governing bodies,
and how difficult it can be to conform to sets of overlapping,
possibly conflicting, standards. Another application of model
management comes in the form of assurance case reuse [7].
This work is somewhat similar to the work presented in this
paper, in that both aim to reuse existing model-based artifacts,
and provide tool support to do so. Our work aims to extend and
expand this previous work in model management to include
model test evolution and change impact analysis.

C. Impact Analysis
Impact analysis in source code is a well established area,

and in particular has been explored by Rungta et. al. [11],
who present an analysis of change impact to infer evolving
program behaviours. The change impact analysis in this paper
shares a common motivation and is conceptually similar, but
focuses on the co-evolution of Simulink models and their tests
rather than source code.

In the modeling domain, Briand et. al. have studied impact
analysis and change management for UML models [5] and
present an automation of this based on UML designs [6].
While similar to our work, the implementations and appli-
cations differ; our work focuses on Matlab Simulink models,



for which these kinds of impact analysis techniques have not
previously been effectively applied.

DiffPlug [1] provides a range of analyses, including visual
differencing of Simulink models and a single-level implemen-
tation of impact analysis which they call signal tracing. While
DiffPlug provides the ability to select a block and trace its
signals to explore what-if scenarios, it does so only at the
current model level forcing users to traverse the model level-
by-level by hand to identify affected target inputs and/or out-
puts. By contrast, SimPact traverses the entire model hierarchy
automatically, tracing and highlighting all potential impact
from a given block at all levels. Moreover, DiffPlug functions
entirely in a separate custom model editor, whereas SimPact
is integrated directly into the native Simulink environment.

Recently Mathworks added the Simulink Design Verifier
(SDV) [2] to the Simulink toolset. SDV has a Model Slicer
feature that provides a dependency analysis similar to SimPact
for single models. The main difference between SDV and
our work is that SDV’s slicer is restricted to a single model,
whereas SimPact provides automatic differencing across con-
secutive model versions to infer the impact of changes and
support model evolution over time.

Early work in Simulink model slicing was done by Re-
icherdt and Glesner [10], however there is room for expansion
of their work to supplement their earlier findings.

III. SIMULINK IMPACT ANALYSIS

In this section, we present a two phase process for impact
analysis of Simulink model version evolution. The first phase
involves model differencing to generate a list of changes
between model versions (change isolation), and the second
determines the potential impact of those changes on inputs
and outputs via recursive propagation of changes.

A. Change Isolation
The first step in determining the impact of changes at the

model level on test values is the identification and isolation of
the model changes. This process is essentially an exercise in
model differencing; a well documented and studied process.

We began with the model differencing script of Rapos
and Cordy [9] (which uses the internal Simulink comparison
operator). Their algorithm was adapted to produce only a list
of handles to Simulink objects in the updated model that had
been modified or added, and a list of those in the previous
model that had been deleted; both lists are then combined.

B. Determining Impact of Changes on Test Values
Given the list of changes, the potential impact of these

changes on test values can then be determined. This is done
by iterating over each change, locating it in the model, and
propagating its potential impact forward and/or backward as
chosen by the user. This propagation is done using a recursive
algorithm in each direction that traverses signal lines to find
the next blocks, and then recursively finds the impacted blocks
from that block, and so on. The exploration ends at any top
level signal that corresponds to an input or output of the model,
at which point that input or output identifier is added to the list
of values that are potentially affected by the change. Figure 1

function impactAnalysis(changes)
for each item in changes
currentChange = item
forward(currentChange)
backward(currentChange)

end
end impactAnalysis

function forward(currentChange)
if currentChange is TopLevelOutput

% there is nowhere left to go forward
listOfOutputs.add(currentChange)

else
for each item in currentChange.outputs
if not (visited.contains(item))
visited.add(item)
forward(item)

end
end

end
end forward

function backward(currentChange)
if currentChange is TopLevelInput

% there is nowhere left to go backward
listOfInputs.add(currentChange)

else
for each item in currentChange.inputs

if not (visited.contains(item))
visited.add(item)
backward(item)

end
end

end
end backward

Fig. 1. Pseudodode listing for impact analysis

shows a pseudocode representation of this algorithm. The end
result of this analysis is both an inputList and an outputList,
representing the potentially affected test inputs and outputs.

C. Understanding the Results
The first and most important point in understanding the

results is that the test inputs and outputs identified are candi-
dates for impact. The goal of this work is to automatically
determine only the potential impact of the changes made
between versions on the tests. Further processing of the results
is required, and this can be done in one of two ways: (i)
the developer can manually inspect, validate and edit the
potentially affected test values or (ii) they can use Simulink
simulation to generate new candidate values for the potentially
affected outputs using existing inputs.

IV. TOOL IMPLEMENTATION: SIMPACT

In this section we present an implementation of our impact
algorithms in the tool SimPact (Simulink Impact Analysis).
SimPact is implemented as a set of Matlab scripts that run
in the Simulink interactive development environment (IDE),
invoked either from the Matlab command window or interac-
tively from context menus automatically added to the Simulink
interface. We discuss SimPact in the context of two different
use cases: static analysis for test maintenance, and interactive
analysis for change planning.



Fig. 2. Tracking Changes Manually

A. Static Analysis: Test Updates
The static analysis application of SimPact works from

the Matlab command line. SimPact takes as arguments two
Simulink model files, normally two consecutive versions of the
same model. SimPact performs the analysis from the previous
sections, and yields a list of potentially impacted inputs and
outputs. This kind of analysis is useful after a number of
updates or changes have been applied to a model and the
developer wants to consider the potential impacts of those
changes on test inputs and outputs. We can consider this as
the batch processing mode of SimPact, identifying potential
test impacts of a model update after the fact.

SimPact provides two options for this static analysis: High-
light Potential Changes in Test File, and Generate Suggested
Outputs. For both of these options, in addition to the model
files, the previous test case file for the model is required. If
the first option is chosen, then in addition to identifying the
potentially impacted inputs and outputs in the Simulink IDE,
SimPact highlights the columns that contain the potentially
impacted values directly in the test case file, and creates a
new version of the test case file for manual inspection. The
second option takes this one step further, and makes use of
existing industry tools to generate suggested output values via
simulation for the previous input values.

B. Interactive Analysis: Development Scenarios
The interactive analysis application of SimPact arose from

discussions with our industry partner, particularly the desire
to select a particular model block, and to see, directly in the
Simulink IDE, what the potential impact of a change to that
block would be. The need for this kind of “what if” analysis
comes from the inherent complexity in understanding multi-
level hierarchical models developed in Simulink. For example,
Figure 2 shows a Simulink system in the top left corner (a).
If developers need to know the potential impact of a change
the block in the center of the system (a sum block) in order to
plan some other calculation, they can easily see the impact at
that particular level. However, as they navigate up the model
hierarchy (through (b), (c), and (d)) it becomes increasingly
difficult to keep track of changes, and almost impossible to
enumerate all of the potential impact. In the Figure we have
highlighted the source of the embedded change at each level;
in practice no such identification is visible in Simulink.

Fig. 3. SimPact Interactive Analysis Plugin highlights impact at all levels

Based on this it was determined that an interactive plugin
capable of interacting with Simulink models directly would
be the most effective implementation. The actual calculation
of the potential impact does not change, aside from the fact
there is no need to find the differences; the selected block
becomes the one difference. Essentially the interactive analysis
uses only the second half of the static analysis. Each of the
options (forward, backward, and both) is added to the Simulink
context menu for blocks using a custom sl customization.m
file with the required code to invoke SimPact. This special file
is Matlab’s method of plugin integration.

To demonstrate this capability, Figure 3 demonstrates how
all changes would be highlighted in the same use case ex-
plained previously for Figure 2. The selected block, and any
parents containing it, are colored yellow, while all potentially
impacted blocks are outlined in red.

V. VALIDATION

As SimPact is essentially a prediction tool, our validation of
its effectiveness was conducted by comparing its predictions
against the ground truth of observed test case changes between
historical versions of industrial models. This section details the
experimental design and observed results of our validation, and
a discussion of the findings.

A. Model Set
We were very fortunate to have access to a production

application consisting of a large set of Simulink automotive
domain Models and Tests over several releases from our in-
dustry partner. They are structured into nine main components
(referred to as rings), each of which is made up of a number of
sub-components. In total there are 55 sub-component models
and 9 ring integration models, for a total of 64 different models
in the system (not all of which exist in all of the releases).

In total there are 15 releases of the application from a
version control system (VCS), however there are several
releases during which there were no changes and no versions
added to the VCS (releases 4, 5, 9, 12, and 14). Since those
releases involved no evolution, for our experiment they were
removed entirely, along with a 6th release removed for similar
reasons; this left 9 releases to examine. The term “release” in
the context of this work does not actually refer to a final pro-
duction version of the system. All of the versions examined are
actually pre-release. In the context of our industry partner, a



release refers to a milestone in development; every incremental
time block, the release number is increased.

For each of the models, there is an associated test suite
provided along with the models. For the purposes of this
application, each test suite is contained in an Excel workbook
comprised of a number of Excel spreadsheets (using the tabs
in Excel), each containing test inputs and expected outputs
for the given model over a number of time steps. Each row
represents a time step, and each column is an input value or
an expected output value. The tests are run by simulation in
Simulink, and the results compared with the expected outputs.

B. Experimental Design
In order to observe the effectiveness of SimPact’s prediction

abilities, a comparison against a ground truth is necessary. For
each of the 8 of the evolution steps (i.e. the move from one
version to the next e.g. release 13 to release 15), a four step
process was used.

(1) SimPact for Change Prediction - For every pair of
consecutive model versions, the static analysis implementation
of SimPact was run to determine what the potential impact on
the test cases would be. The result of this step for each pair
was a list of potentially impacted inputs and outputs.

(2) Observing Actual Test Changes - A test differencing
script was developed to identify test changes. For each differ-
ence observed the change is noted. The final output is a list
of test inputs and outputs that have been changed between the
two versions. These actual changes form the ground truth to
be compared against.

(3) Calculation of Precision and Recall - Given the
predicted potential change and actual observed change, pre-
cision and recall were calculated using the formulas below.
Since different developers may have different use cases, and
since SimPact can predict both forward and backward impact,
precision and recall were calculated separately for inputs and
outputs. The following definitions and calculations were used
for this step of the experiment:

• True Positive (TP) - Test values that were predicted by
SimPact that actually changed

• False Positive (FP) - Test values that were predicted by
SimPact that did not actually change

• False Negative (FN) - Test values that were not predicted
by SimPact that actually changed

• True Negative (TN) - Test values that were not predicted
by SimPact that did not actually change

Precision =
TP

TP + FP
Recall =

TP

TP + FN

(4) Combining Precision and Recall Metrics - Because of
the high number of 4-tuples (input precision, input recall, out-
put precision, and input recall) obtained from the experiment,
and the lack of a single performance score, it was difficult
to discern the effectiveness of SimPact. Therefore average
precision and recall were calculated for every model in each of
the evolution steps, leaving only eight 4-tuples of results (one
for each evolution step). An average of these eight averages

was calculated to provide precision and recall for input and
output over the entire model set. Finally, the precision and
recall values were combined into an F-measure to provide their
harmonic mean using the formula below.

F −measure =
2 ∗ (Precision ∗Recall)

Precision+Recall

C. Results
The results of the validation experiment to evaluate the

precision and recall of SimPact in test change prediction are
shown in Table I. Overall the results are very promising, but
with a few areas for improvement, or rather discussion.

The overall performance of the tool is dominated by three
particular evolution steps: releases 1-3, releases 7-8, and
releases 10-11. While these three results are the worst per-
forming, these evolution steps were identified by our industry
partner as those just prior to a major release, thus there is
an increased number of changes occurring in these evolution
steps. If these comparisons are removed from the results, the
F-measures for input and output increase to 0.93 and 0.95
respectively. From this, it is possible to determine that SimPact
works more effectively at a finer grain, that is, on smaller
amounts of changes. This actually better aligns the tool, as
smaller increments are the intended use case. A more common
usage would likely be on a day to day basis to determine the
impacts of that day’s changes, rather than at the end of the
release, capturing seven weeks of changes.

When performing a prediction experiment, typical areas of
concern are false positives and false negatives. When it comes
to false positives, these are inputs and outputs predicted to
potentially require change by SimPact which did not actually
change. Previous work in Simulink evolution has shown that
there are some instances of model change that do not require
changes in the test cases [9]; these form part of the collection
of false positives. Further to this, from the perspective of
software quality, a small number of false positives is of
relatively low concern, as they simply mean that additional
scrutiny will be used in examining the effect of changes.

False negatives, which are the changes made to the test
values that SimPact was not able to predict the need for, are
of slightly more concern. These cases could potentially mean

TABLE I
SIMPACT PRECISION AND RECALL FOR PREDICTED IMPACT ON TEST

CASE INPUTS AND OUTPUTS

Inputs Outputs
Prec. Recall Prec. Recall

release 1-3 0.66 0.67 0.58 0.65
release 3-6 0.91 0.91 0.85 0.85
release 6-7 0.99 0.98 0.99 0.97
release 7-8 0.76 0.83 0.61 0.62
release 8-10 0.89 0.90 0.85 0.85
release 10-11 0.80 0.81 0.84 0.85
release 11-13 0.98 1.00 0.98 1.00
release 13-15 1.00 1.00 0.96 0.95

Average 0.87 0.89 0.83 0.84

F-Measure, Inputs 0.88
F-Measure, Outputs 0.84



that some necessary changes to test cases may be overlooked
when using SimPact. While it has yet to be confirmed, from
an examination of the cases of poor performance and the
existence of false negatives, it appears that the missed changes
in output values may be caused by changes to the input values
in the tests. Essentially the change in the test output values
was not due to the change in the model, but rather to an
independent change in the test inputs, something SimPact does
not have access to during its prediction.

VI. FUTURE WORK

One of the shortcomings of SimPact is still that it provides
potential impact, and suggested test values using simulation.
One possible area of future work is to increase the confidence
in its ability to specifically predict exact impact, and to
provide test case values based on more informed local domain
knowledge rather than simulation. These improvements will
require significant work.

Additionally, since our work on impact analysis is similar
to software slicing, further work in the area of model slicing
may be possible. Currently SimPact is capable of producing
forward and backward slices of a model from a given point,
and even both slices together, but it is of interest to extend
it to be able to compute the intersection of slices, in order
to determine which sections of the model are co-relevant
to two (or more) blocks in the model. A use-case for this
function would be selecting a single input and and single
output and determining the intersection of the forward slice
of the input and the backward slice of the output to identify
the components of the model that are part of both, allowing
for a single snapshot of the system.

One possible area of expansion is the integration of SimPact
with a version control system in order avoid the necessity
of having both versions of the model on the developer’s
workstation. Access to the version control system would allow
SimPact to check a newly checked-in version directly against
the previous version. Another possibiity is the provision of an
interactive review of potential test case changes. Currently,
these are either marked in the test file or generated via
simulation, then left for the developer to edit by hand. It may
be useful to have the developer see the changes as they are
suggested and either approve or reject them interactively. No
doubt many other tool support ideas will emerge over time as
SimPact is used, from both the research perspective and from
experiential feedback from our industry partners.

VII. SUMMARY & CONCLUSION

SimPact is able to accurately trace impact of changes to any
given model block through the rest of a model, traversing the
hierarchy to the top level inputs and outputs, thus identifying
potential impact on test case values. This was implemented
in both an interactive and static analysis tool. Static analysis
works on batch changes between two versions of the same
model, and interactive analysis works directly in an open
Simulink model, accessible from the block context menu.

SimPact was validated by calculating precision, recall and
F-measure of its ability to predict changes in inputs and

outputs of actual industrial test cases. F-measures for input
and output test change predication were calculated to be 0.87
and 0.84 respectively (and with the removal of non-standard
use cases, 0.95 and 0.93 respectively). As a prediction tool
SimPact provides promising results contributing to the goal of
supporting Simulink model evolution.
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