
SimNav:
Simulink Navigation of Model Clone Classes

Eric J. Rapos, Andrew Stevenson, Manar H. Alalfi, James R. Cordy
School of Computing, Queen’s University

Kingston, Ontario, Canada
Email: {eric, andrews, alalfi, cordy}@cs.queensu.ca

Abstract—SimNav is a GUI designed for displaying and
navigating clone classes of Simulink models detected by the
model clone detector Simone. As an embedded Simulink interface
tool, SimNav allows model developers to explore detected clones
directly in their own model development environment rather
than a separate research tool interface. SimNav allows users to
open selected models for side-by-side comparison, in order to
visually explore clone classes and view the differences in the clone
instances, as well as to explore the context in which the clones
exist. This tool paper describes the motivation, implementation,
and use cases for SimNav.

SimNav can be downloaded here:
http://cs.queensu.ca/home/eric/SimNav.html

A video demonstrating SimNav can be found here:
https://youtu.be/6oPR3U31I8M

I. INTRODUCTION

Clone detection in Simulink models can serve a number of
purposes, such as finding model patterns and anti-patterns, ex-
amining evolution between versions, enforcing consistency and
standards, and many other applications in model maintenance
and quality assurance. Simone [2] is a text-based near-miss
(Type 3) clone detector for Simulink model clones based on
the NiCad [9] code clone detector. The native NiCad output of
Simone, consisting of text-based HTML and XML reports, can
be difficult for Simulink model developers to understand and
relate to the visual Simulink graphical models they normally
work with. SimNav provides a bridge between these two
representations that is intended to bring the clone detection
results of Simone directly into the developers’ own Simulink
modelling environment where they can explore, investigate and
act upon clone detection results in the context of their own
familiar workspace.

Emergent patterns in Simulink models found through clone
detection [4], whether they are exact clones or near-miss
clones, provide developers with useful information about a
collection of models. Similar model sections can be indica-
tive of the reuse of model sections, either intentionally or
unintentionally, which can provide developers with the op-
portunity to create new library blocks, which can replace the
clone instances. Model clones can also uncover instances of
documented design patterns or anti-patterns [11], assisting in
overall quality improvement.

Simone is also useful for studying evolution of Simulink
models and model clones [10]. By using Simone on multiple
versions of the same model, it is possible to identify sections
of models that remain unchanged from version to version, or
change minimally (near-miss results), as well as observing how

clone classes evolve over versions. This information is useful
as it reveals areas of models that remain consistent over time,
and the inverse set can be used to find sections of the model
that are prone to changes in each version, which is also useful
for developers as it indicates sections that may be prone to the
introduction of bugs in subsequent versions.

Each of these uses reveals information that can be used
by developers to improve the model maintenance process. The
detection of patterns can lead to the creation of library blocks
for commonly occurring exact clones, and the detection of
near-miss clones can assist in Simulink variability modelling
[3]. The detection of clones over model versions reveals
information that will help in the maintenance over time by
identifying sections of models that require additional attention
and testing, as they evolve more frequently than others, as well
as sections that evolve less frequently, or not at all. SimNav
assists in bringing the results of clone analysis directly into
the environment where these tasks are carried out and actions
can be taken to address issues directly.

The next section of this paper examines related approaches
to presenting clone detection results. The remainder of the
paper presents the implementation of SimNav, detailing the
technical aspects, as well as presenting several use cases,
accompanied by screen shots of the tool.

II. RELATED WORK

CloneDetective [6] is a tool capable of performing clone
detection on Simulink models and presenting the results to
users in a graphical interface. CloneDetective reproduces the
models and displays them in a custom stand-alone tool, rather
than directly within Simulink, which requires that developers
learn a new interface and precludes the possibility of working
with the models directly.

ModelCD [8] presents another model clone detection tool
for Simulink models. ModelCD uses an algorithm called aScan
to find approximate clones, which are analogous to Simone’s
near-miss clones, and is also capable of finding exact clones
using another algorithm called eScan. ModelCD allows for
the viewing of clones within Simulink using a Matlab script
that opens and colours the clones in Matlab, but the actual
clone detection results are not available in Simulink and the
viewed models are copies of the originals. The functionality of
ModelCD is somewhat similar to opening individual models
using SimNav, but without the ability to explore clone classes,
similarity and instances directly in the Simulink workspace.

The Naive Clone Detector [7] is an exact clone detector for
Simulink models. Similarly to the other approaches discussed,



the results are not presented directly in Simulink, but rather
a Matlab Connector is provided. The Naive Clone Detector is
capable of presenting the clone detection results, however the
Matlab Connector must be used to separately open the models
in Simulink.

Model Quality Assessor [5] is another tool used to view
clone detection results (referred to by the authors as clone
inspection). Model Quality Assessor is an external tool capable
of visually displaying the clones that were detected, but lacks
the direct integration with the Simulink environment provided
by SimNav.

III. IMPLEMENTATION

One of the main goals of our implementation was the
integration with the Simulink environment; our tool needed
to be familiar to Simulink model developers without training.
As such, all development was done directly in Matlab, making
use of the various libraries and functionality provided.

The remainder of this section details specific design choices
in the areas of user interface design, filtering and focussing
methods, and outlines our process for industrial feedback.

A. User Interface Design

The SimNav user interface (UI) itself is simply designed to
avoid cluttering and to ensure that users can easily identify how
to perform desired tasks. The main portion of the UI is a table
which displays the clone classes that were detected by Simone.
The table has four columns: (i) Clone Class, (ii) Similarity,
(iii) Subsystem, and (iv) Model File. The Clone Class number
is a unique ID assigned to each clone class sequentially, and
used to reference a clone class. The Similarity value indicates
the similarity for a particular clone class as a percentage. The
Subsystem identifies the full path the subsystem where the
clone instance occurs. And finally, the Model File indicates
which model file the subsystem is located in.

Beyond the table with its four columns, there are six
controls along the top of the GUI: (i) Load Report, (ii) Open
Selected, (iii) Close All, (iv) Deselect All, (v) Clone Type, and
(vi) Similarity. Load Report will open a dialog box, which is
used to select a Simone report to load into SimNav for further
inspection. Open Selected will open all selected clone instances
(instances are selected using a standard Ctrl+Click method, or
by selecting an entire clone class by clicking on its ID) and
tile them on the screen. Close All will close all opened models,
and Deselect All will remove highlighting of any selected
models. Alternatively, clicking on another clone class ID will
close all open models, deselect all selected models, and select
the new clone class. The Clone Type dropdown is used to
filter the displayed results by the clone class type, which will
be explained further in Section III-B. The Similarity control
is used to filter the clone classes by their similarity; this is
done by selecting a lower and upper bound on the similarity
using the arrows on the selector boxes, and the filtering takes
place after a 1 second delay, allowing the user to adjust both
values without performing the sort multiple time. This filtering
process will also be explained in Section III-B. Figure 1 shows
all of these columns and controls in the SimNav toolbar.

Matlab’s Graphical User Interface Design Environment
(GUIDE) [1] provided us with the perfect platform for creating
a user interface that would work within the Matlab/Simulink

setting, while still allowing us the flexibility to implement our
own functionality and features. GUIDE allowed us to create
our UI using a simple drag and drop interface where we were
able to add buttons and other controls, change their attributes,
and assign function calls to any events where a response from
the tool was necessary. The final UI for SimNav is simple, easy
to navigate, and provides the desired functionality.
B. Filtering

SimNav allows for two types of filtering of the presented
clone classes: (i) filtering based on the clone class type, and
(ii) filtering based on the similarity of the clone class. This
section will describe the implementation of these two types of
filtering.

The first type of filtering is based on the concept of a clone
type. As part of the refinement process, it became evident that
the clone analysis would be useful to find clones within a
single model, as well as across model files. As part of this, we
developed the concepts of internal clone classes and external
clone classes.

Internal clone classes are clone classes that contain only
model instances from within the same model. Any clone class
that has two or more instances from the same model file would
be displayed during and Internal Only filter. An internal clone
class may contain model instances from more than one model
file, but each model file must have at least two instances, and
any singleton model files are removed. As part of this filter,
the model instances are sorted by model file name, in order
to see how many instances occur in each file. For example, a
clone class that originally contains two instances from Model
A, one instance from Model B, two instances from Model C,
and one instance from Model D, when filtered for internal
clones, would only display the two instances from Model A
and the two instances from Model C, sorted such that the pairs
are shown together.

External clone classes are clone classes that contain only
model instances from different models. Any clone class that
has at most one instance from a model file would be displayed
during the External Only filter.

The default sort for SimNav is the Internal & External sort,
which shows both types, and all instances in each clone class.

The filtering based on clone class is done at the time of
loading the report. When the report is loaded into SimNav,
three tables are created - one for each of the types of sorts.
The tables are constructed by iterating through the input file,
and constructing the 4-column table that is displayed within
the UI of SimNav. Each clone class is selected and all of the
information is added to the table representing the default sort
of Internal & External, then the clone class is explored to see
which of the other two types of filtering it matches, and is
added to one of those tables as well. Once the three tables are
stored in memory, the default filtering is displayed on the UI,
and the other two are readily available for quick replacement,
meaning that no matter how many times the view is changed,
the filtering is only conducted once when the report is loaded.

The second type of filtering that SimNav is capable of is
filtering based on the similarity of the clone class. The default
filtering is from whatever the lower threshold of the particular
set of models is, which is identified at load time, to 100%.



Fig. 1. The SimNav Toolbar

However it may be useful to filter out uninteresting results,
such as those that are too similar or too dissimilar. Without
wanting to impose too many restrictions on the filtering, we
wanted it to be as free as possible, meaning that the user is
able to choose a similarity range down to a granularity of a
single percent.

Unlike the clone class type filtering, the similarity filtering
is not done at the load time, and is done on the fly as the user
selects the filtering they would like to be displayed. Once a
user has selected a similarity range using the selector boxes,
the upper and lower bound are passed to the filtering function
to perform the filter, along with the current clone class filtering
type. The filtering function will create a fresh copy of the full
table for the currently selected clone class type (created at load
time) and will iterate through each clone class, removing those
that are outside of the set bounds. Once each clone class is
either included or excluded, the resulting set of clone classes
is displayed in the UI.

C. Industry Feedback

Throughout the development process, we collaborated with
our industry partners, presenting iterations of the tool, and
requesting feedback on both functionality and UI design. This
section will detail some of the feedback and how it was
incorporated into our design.

The first major piece of feedback that came from our
industry partners was a request to be able to see only the clone
classes that contain clones within a single model file. This was
a use-case that we had not previously considered, which led
to the introduction of the filtering based on clone class types.

Similarly, the other type of filtering, based on similarity,
was also a result of feedback from our industry partners.
Initially, we would only present all of the results, but it was
communicated to us that it would be useful to exclude some of
the results, some of the time, meaning that it would be good
to allow the user to choose for themselves which ranges of
similarity they wanted to display.

Beyond the two filters, our industry partners also provided
us with minor feedback relating to UI design; a few requests
that would make the UI more intuitive and responsive to the
way work-flow would normally occur.

The collaboration with industry has provided us with
additional insight into the use cases for SimNav which allowed
us to further develop the tool into something desired for use
in industry, and the positive feedback about the Simulink
integration validated our initial goals.

IV. USE CASES

The following use cases show basic functionality of Sim-
Nav, using a combined set of open-source automotive models,
which we first ran Simone on to obtain clone detection results.

Fig. 2. Choosing the Simone Report to load

The models come from a number of open-source projects, and
can be found on the SimNav page along with the download of
SimNav.
A. Viewing Clone Class Reports

The first use case for SimNav is the viewing of the clone
class reports generated by Simone. As part of the clone
detection process, Simone produces a CSV file, which contains
the clone classes, and the instance models. SimNav provides
the functionality of choosing any of these reports using a
simple file selection box, as seen in Figure 2.

After choosing a Simone report, SimNav loads up the clone
classes and displays them in a table, providing the user with
the following attributes: clone class ID, similarity, subsystem
name, and model file. An example of a loaded report can be
seen in Figure 3.

With this view, the user can examine how many clone
classes were detected, the sizes of the clone classes, how
similar the clone classes are, and which models and subsystems
occur within the clone class.
B. Viewing Clone Class Instances

Once the user has identified the model clones of interest,
they may select manually any number of models, or an entire
clone class at a time by clicking on the clone class number.
The selection of an entire clone class can be seen in Figure 4
for clone class 1.

After clicking on Open Selected, the models are opened
and the clone instances are tiled on the screen. Figure 5 shows
the opening of clone class 1, tiling the two instances side-by-
side. Clone class 1 has a similarity of 83%, meaning it is not
exact, so a visual inspection of the models can help identify
how the models differ. In Figure 5 we see that there is a minor



Fig. 3. Main view of SimNav

Fig. 4. Selecting all of clone class 1

difference at the top level view: the output block on the lower
right hand side is different in each model (one is a subsystem
and the other is a terminator block).

SimNav is capable of displaying more than two models at a
time, which can be seen in Figure 6 which displays the opening
of clone class 2, which has three models, and a similarity of
88%. This particular clone class reveals an interesting result,
as it found a library block, and two instances of the library

block over versions of the model.

Once done examining the models, SimNav is capable of
closing all of the instances in two different ways: clicking the
Close All button, or by selecting a new clone class. The first
option will close all of the open models, but they will still
be selected in the SimNav GUI, which can then be deselected
using the Deselect All button. The second option will automat-
ically close all open models, deselect those models, and select
the new clone class.

C. Filtering Results

In addition to simply viewing the clone class results and
opening models, SimNav provides the user with additional
functionality related to filtering the clone class results.

As explained in Section III-B, SimNav implements two
types of filtering. Using the same model set from the previous
use case, and using the Internal Only filter, SimNav would
provide the view in Figure 7 where a number of Clone Classes
are filtered out (1,2,4,5,6,8...).

The other type of filtering available in SimNav is based on
the Similarity of the clone class, and wanting to remove any
clone classes that may not be relevant to the current analysis.
Figure 8 shows filtering the models to only display clone
classes with similarity between 75% and 89%, which leaves
only five clone classes (1, 2, 8, 10, and 11).



Fig. 5. Opening clone class 1, automatically tiled (2 models)

Fig. 7. Filtering results to show only clone classes with internal clones

V. FUTURE WORK

There are still several features that we would like to include
in SimNav which would increase its usefulness.

The first of these would be the ability to visually identify
differences and similarities within a clone class. Currently,
users need to manually identify these by looking at instances,
but we plan to implement a method of colouring differences

Fig. 8. Filtering results to show only clone classes with similarity between
75% and 89%

and/or similarities, to easily show how models differ. We have
begun early work on this feature, which is relatively simple
for pairs of models, but increases in complexity as the clone
class increases in size.

Another use case for SimNav is the ability to create vari-
ability models of near-miss clone classes [3]. The ability for
SimNav to take a clone class, which is mostly similar, with a



Fig. 6. Opening clone class 2, automatically tiled (3 models)

few minor differences, and merge them into a single variability
model, would allow for the automation of previous work on
variability and model product lines, and further improve the
maintenance of Simulink models.

VI. CONCLUSION

SimNav implements the presentation of results from the
Simone model clone detector directly in the Simulink envi-
ronment, a property absent from many other clone detection
tools for Simulink models. The ability to view results and
open models within Simulink makes SimNav an effective
tool for navigation of Simulink clone classes. Further the
filtering features of SimNav add to its usefulness to developers,
allowing them to display only clones of interest to them in a
particular use case, whether that is clones of a certain type or
within a certain similarity range. The industry collaboration
involved in the development of SimNav has been a huge asset.

ACKNOWLEDGMENTS

The authors would like to thank the NECSIS Automotive
Research Network, General Motors, and NSERC for their sup-
port. Additionally, we would like to thank Kenny-Luc Vuong,
Melanie Wightman, and Ron Elbaz for their contributions.

REFERENCES

[1] Mathworks MATLAB GUI Design. http://www.mathworks.com/
discovery/matlab-gui.html. Accessed: 2015-05-21.

[2] M.H. Alalfi, J.R. Cordy, T.R. Dean, M. Stephan, and A. Stevenson.
Models are code too: Near-miss clone detection for Simulink models.
In ICSM 2012, pages 295–304, Sept 2012.

[3] M.H. Alalfi, E.J. Rapos, A. Stevenson, M. Stephan, T.R. Dean, and J.R.
Cordy. Semi-automatic identification and representation of subsystem
variability in simulink models. In ICSME 2014, pages 486–490, 2014.

[4] J.R. Cordy. Submodel pattern extraction for Simulink models. In SPLC
2013, pages 7–10, 2013.

[5] F. Deissenboeck, B. Hummel, E. Juergens, M. Pfaehler, and B. Schaetz.
Model clone detection in practice. In IWSC 2010, pages 57–64, 2010.

[6] E. Juergens, F. Deissenboeck, and B. Hummel. CloneDetective-a
workbench for clone detection research. In ICSE 2009, pages 603–
606, 2009.

[7] H. Petersen. Clone detection in matlab simulink models. Master’s
thesis, Technical University of Denmark, 2012.

[8] N.H. Pham, H.A. Nguyen, T.T Nguyen, J.M. Al-Kofahi, and T.N.
Nguyen. Complete and accurate clone detection in graph-based models.
In ICSE 2009, pages 276–286, 2009.

[9] C.K. Roy and J.R. Cordy. NICAD: Accurate detection of near-miss
intentional clones using flexible pretty-printing and code normalization.
In ICPC 2008, pages 172–181, 2008.

[10] M. Stephan, M.H. Alalfi, J.R. Cordy, and A. Stevenson. Evolution of
model clones in Simulink. In ME@ MODELS 2013, pages 40–49, 2013.

[11] M. Stephan and J.R. Cordy. Identifying instances of model design
patterns and antipatterns using model clone detection. In MISE 2015,
pages 48–53, 2015.


