
Model Transformations for Migrating Legacy Models:
An Industrial Case Study

Gehan M. K. Selim1, Shige Wang2, James R. Cordy1 and Juergen Dingel1

1 School of Computing, Queen’s University, Kingston, Ontario, Canada, K7L3N6
2 Electrical and Controls Integration Lab, General Motors Research & Development, War-

ren, Michigan, USA, 48090
gehan@cs.queensu.ca, shige.wang@gm.com, {cordy, dingel}@cs.queensu.ca

Abstract. Many companies in the automotive industry have adopted MDD in
their vehicle control software development. As a major automotive company,
General Motors has been using a custom-built, domain-specific modeling lan-
guage, implemented as an internal proprietary metamodel, to meet the modeling
needs in its control software development. As AUTOSAR (AUTomotive Open
System ARchitecture) is being developed as a standard to ease the process of
integrating components provided by different suppliers and manufacturers,
there is a growing demand to migrate these GM-specific, legacy models to
AUTOSAR models. Given that AUTOSAR defines its own metamodel for var-
ious system artifacts in automotive software development, we explore using
model transformations to address the challenges in migrating GM legacy mod-
els to their AUTOSAR equivalents. As a case study, we have built a model
transformation using the MDWorkbench tool and the Atlas Transformation
Language (ATL). This paper reports on the case study, makes observations
based on our experience to assist in the development of similar types of trans-
formations, and provides recommendations for further research.

Keywords: Model Driven Development (MDD), model transformations,
AUTOSAR, transformation languages and tools, automotive control software

1 Introduction

MDD is a relatively new software development methodology that uses models for
software specification and communication. In MDD, software development is a se-
quence of model transformations where abstract models are successively converted
into detailed models, and eventually into code. Model transformations are implement-
ed using a model transformation language, which can be declarative, imperative, or
hybrid. While a declarative language yields a compact specification, an imperative
language is more capable of specifying complex transformations.

As one of the early MDD adopters in industry, General Motors (GM) has created a
domain-specific modeling language, implemented as an internal proprietary meta-
model, for Vehicle Control Software (VCS) development. The metamodel defines
modeling constructs for vehicle control software development, including schedules

2

and interfaces. VCS models conforming to this metamodel have been used in several
vehicle production domains at GM, such as body control and monitoring.

Recently, AUTOSAR (the AUTomotive Open System ARchitecture) [2] has been
developed as an industry standard to facilitate integration of software components
from different manufacturers and suppliers and enable exchangeability and interoper-
ability among them. AUTOSAR defines its own metamodel with a well-defined lay-
ered architecture and interfaces. Since converging to AUTOSAR is a strategic direc-
tion for future modeling activities, transforming GM legacy models to their equivalent
AUTOSAR models becomes essential. Model transformation is a key enabling tech-
nology to achieve this convergence objective.

Despite the existence of studies in MDD industry adoption [19][23], no transfor-
mation is reported to have migrated legacy models in the automotive industry. To test
the practicality of using transformations for migrating industrial legacy models, we
have implemented a transformation of GM legacy models to AUTOSAR models.

The rest of this paper is organized as follows. Section 2 discusses the process con-
text in which our transformation is implemented. Section 3 describes the source and
target metamodels of the transformation. Section 4 details the transformation devel-
opment. Section 5 discusses our experiences and issues that require further research.
Section 6 provides a summary, a comparison to related work and future work.

2 VCS Development, Models and Model Transformations

Applying transformation requires understanding of the development process, which
provides a context for the transformation. The VCS development process is described
as a V-diagram (Fig. 1). The stages on the left-hand side of the V-diagram are design
and implementation activities, and the stages of the right-hand are integration and
validation activities. The design starts from system requirements models, which are
decomposed into hardware and software subsystem requirements models. The subsys-
tem requirements models then are assigned to engineering groups for refinement into
design models and then implemented by hardware and software components. These
implemented components are integrated into Electronic Control Units (ECUs), con-
figured for a designated vehicle product. The components are then tested at various
levels against their models on the same level on the left-hand side of the V-diagram.

Different types of models in different formalisms are manipulated in the VCS de-
velopment process. For example, control models use differential equations and tim-
ing-variation functions; software models use dataflow diagrams or class diagrams;
and architecture models use annotated block diagrams. Selected modeling tools (e.g.,
Simulink, Rhapsody) and languages (e.g., UML, AADL) are used for modeling.

The transformations used in the VCS development process can be horizontal or
vertical transformations. Horizontal transformations manipulate models at the same
abstraction level but possibly in different formalisms, e.g. transforming a Matlab
Stateflow state machine into a UML state machine. Such transformations are normal-
ly used to verify integration of subsystems to realize a system function. The source
and target modeling languages may have different syntax, but must share similar se-

Mod

mantics.
e.g. gener
Vertical
due to the

3 So

In this stu
sign stag
proprietar
metamod
losing ge
mation. S
ponents’

3.1 Th

Fig. 2 ill
nodes, de
specifies
tain multi
partition
on a sing
line and

1 The me

pects re

del Transforma

Vertical trans
rating a deplo
transformatio
e different sem

Fig.

ource and T

udy, our mod
ge in the VCS
ry GM metam

del is the AUT
enerality, a su
Specifically, w
deployment a

he GM Metam

lustrates the m
eployed softw
a physical no
iple Partition
on which soft

gle Partition.
can contain m

etamodel has b
equired for the p

ations for Migra

sformations m
oyment model
ns are usually

mantics of the

 1. V-Diagram

Target Met

dels are those
S developmen
model which w
TOSAR Syste
ubset of the

we focus on th
and interaction

model

meta-types in
ware componen
ode on which
instances, eac

ftware is deplo
The Module
multiple Sche

been altered for
purpose of this

ating Legacy M

manipulate mo
l from softwar
y more comp
source and ta

for the VCS de

tamodels

generated and
nt process. Th
we will refer t
em Template [
two metamod

he modeling e
ns, as discusse

the GM met
nts and their
software is d

ch of which d
oyed. Multipl
 type is the at
eduler instanc

r reasons of co
paper have all

Models: An Indu

odels at diffe
re and hardwa
plex than hor
arget models.

evelopment pro

d used at the s
he source me
to as the GM
[2]. To simpli
dels is manip
elements relate
ed below.

tamodel1 that
interactions. T

deployed. A P
efines a proce
e Module inst

tomic, reusabl
ces. The Sche

onfidentiality. H
been preserved

ustrial Case Stud

erent abstracti
are architectur
rizontal transf

cess.

software subs
etamodel is an

metamodel. T
ify the exercis
pulated in the
ed to the softw

represent the
The PhysicalN
PhysicalNode
essing unit or
tances can be
le element in

eduler type is

However, the r
d.

dy 3

ion levels,
re models.
formations

system de-
n internal,
The target
se without
e transfor-
ware com-

e physical
Node type
may con-
a memory

e deployed
a product
the basic

relevant as-

4

unit for software scheduling and manages services provided or required by behavior-
encapsulating entities. Thus, each Scheduler may provide or require many Services.

Fig. 2. The subset of the GM metamodel used in our transformation.

3.2 The AUTOSAR Metamodel

The AUTOSAR metamodel is defined as a set of templates, each of which is a collec-
tion of classes used to specify an AUTOSAR artifact. The System template [3] is used
to capture the configuration of a system or an Electronic Component Unit (ECU). An
ECU is a physical unit on which software is deployed. When used for the configura-
tion of an ECU, the template is referred to as the ECU Extract. Fig. 3. shows the
metatypes in the ECU Extract that capture software deployment on an ECU.

Fig. 3. The AUTOSAR System Template containing relevant types used by our transformation.

The ECU extract contains the System type which aggregates SoftwareComposition
and SystemMapping elements. The SoftwareComposition type points to the Composi-
tionType type which eliminates any nested software components in a SoftwareCom-
position instance. The SoftwareComposition type models the architecture of the soft-
ware components deployed on an ECU, their ports, and the ports’ connectors. Soft-
ware components are modeled using the ComponentPrototype type; ports are modeled
using the PPortPrototype type or RPortPrototype type for providing or requiring
services; connectors are modeled using the ConnectorPrototype type.

The SystemMapping type binds the software components to ECUs and the data el-
ements to signals and frames. The SystemMapping type aggregates the SwcToEcu-
Mapping type, which maps ComponentPrototype elements to an EcuInstance. Ac-
cording to AUTOSAR, only one SwcToEcuMapping instance should be created for
every processing unit or memory partition in an ECU.

softwareComposition 1

swMapping * 0..1 1..*

ecuInstance 1

Scheduler Service

1

1..* 1..*

1..*

provided

required

mapping 1

component
0..1

* 1

softwareComposition

component 1..*

connector 1..*

port 1..*

PhysicalNode Partition Module
1 1* *

System

SystemMapping SoftwareComposition CompositionType

PortPrototype ComponentPrototype

ConnectorPrototype

SwcToEcuMapping

EcuInstance

Model Transformations for Migrating Legacy Models: An Industrial Case Study 5

4 GM-to-AUTOSAR Model Transformation

We implement a GM-to-AUTOSAR model transformation to demonstrate the practi-
cality of adopting transformations in the automotive industry. We rationalize our
choice of the tool and language and we summarize the pragmatics of the chosen lan-
guage. We then discuss the transformation rules and implementation details. Our
transformation takes as inputs the source GM metamodel, the target AUTOSAR sys-
tem template, and an input GM model. The output is an AUTOSAR model.

4.1 Selecting Model Transformation Tool and Language

Several tools and their accompanying languages have been considered for implement-
ing the transformation including IBM Rational Asset Manager (RAM) [13], the
RulesComposer add-on for IBM Rhapsody [14], and MDWorkbench [18].

After investigating the candidate tools, we concluded that IBM RAM and Rules
Composer are not suitable for this transformation. RAM is a repository-based tool that
offers APIs to create relationships between repository assets (e.g. models). The APIs
can manipulate a model as a whole, not the individual model elements. As fine-
grained manipulations are essential for our transformation, the support provided by
RAM is not sufficient. RulesComposer is a rule-based model-to-text generator. Rules
are specified as templates composed of static text and placeholders. When executed,
the static text is copied into the output, and the placeholders are extracted from the
input models. When defining rules, one must ensure that the template generates well-
formed XMI files. Thus, defining the template is time-consuming and error-prone.
Moreover, the rule templates can be very verbose, and thus, difficult to maintain.

MDWorkbench is an Eclipse-based tool for developing model-to-model transfor-
mations using the Atlas Transformation Language (ATL) [1] or the Model Query
Language (MQL) [18]. ATL has declarative and imperative constructs, while MQL
has imperative constructs only. MDWorkbench can manipulate models conforming to
the metamodels registered in the tool (e.g. AUTOSAR) using rules defined in ATL
and MQL. Thus, we choose MDWorkbench to implement the transformation. ATL
was chosen rather than MQL because ATL provides flexibility to mix-and-match
declarative and imperative constructs in the same rule definition.

4.2 ATL Pragmatics

In ATL, a model transformation is defined as a set of rules and helpers. Rules specify
the creation of output model elements. Helpers are used to modularize a transfor-
mation. ATL defines four types of rules and two types of declarative helpers.

Rule Types. The four types of rules are matched rules, lazy rules, unique lazy rules,
and called rules. A matched rule specifies how a source pattern is transformed to a
target pattern. Matched rules are executed in the order of their specification and are
automatically executed once for each matching pattern. A lazy rule is a rule that is
executed only when called for a matching pattern and can be called multiple times for
any match in the input model. A unique lazy rule is a rule that is executed only when

6

called and can be called at most once for any match in the input model. A called rule
is a parameterized rule that is executed only when called and creates an element in the
output model without matching any source patterns. The four kinds of rules have an
optional imperative code block to specify complicated functionality.

Matched rules are suitable for automatic detection of all pattern matches in the in-
put model and creation of their corresponding target patterns; lazy rules and unique
lazy rules are suitable for selective pattern matching, with consideration of the num-
ber of times these rules should be run; and called rules are suitable for creating output
model elements that do not match any input model elements.

Helper Types. The two types of helpers are functional helpers and attribute helpers.
A functional helper is a parametric function that is evaluated each time it is called. An
attribute helper is a non-parametric function that is evaluated only in the first call. An
attribute helper is more efficient to implement a non-parametric functionality. Other-
wise, a functional helper can implement a parametric functionality.

4.3 Model Transformation Design and Development

Our transformation rules were crafted in consultation with domain experts at GM to
realize the required mappings between the metamodels. For reasons of confidentiality,
we present a simplified version of the actual rules. Let M be the input GM model and
M’ the to-be-generated output AUTOSAR model. The rules are defined as follows:

1. For every element physNode of the PhysicalNode type in M, generate an el-
ement sys of the System type, an element swcompos of the SoftwareCompo-
sition type, a containment relation (sys, swcompos), an element composType
of the CompositionType type, a relation (swcompos, composType), an ele-
ment sysmap of the SystemMapping type, a containment relation (sys, sys-
map) and an element ecuInst of the EcuInstance type in M’;

2. For every element partition of the Partition type in M, generate an element
swc2ecumap of the SwcToEcuMapping type and a containment relation
(sysmap, swc2ecumap) in M’;

3. For every containment relation (physNode, partition) in M, generate a rela-
tion (swc2ecumap, ecuInst) in M’;

4. For every element mod of the Module type in M, generate an element comp
of the ComponentPrototype type in M’;

5. For every containment relation (partition, mod) in M, generate a containment
relation (composType, comp) and a relation (sw2ecumap, comp) in M’;

6. For every relation (sched, svc) of the provided type between a sched element
of the Scheduler type and a svc element of the Service type with a contain-
ment relation (mod, sched), generate a pPort element of the PPortPrototype
type and a containment relation (composType , pPort) in M’;

7. For every relation (sched, svc) of the required type between a sched element
of the Scheduler type and a svc element of the Service type with a contain-
ment relation (mod, sched), generate a rPort element of the RPortPrototype
type and a containment relation (composType, rPort) in M’.

Model Transformations for Migrating Legacy Models: An Industrial Case Study 7

(a) Sample input GM model.

(b) Output AUTOSAR model for (a).

Fig. 4. (a) Sample GM input model and (b) its corresponding AUTOSAR output model.

Fig. 4 demonstrates the required transformation from a sample GM model (Fig. 4
(a)) to its expected output AUTOSAR model (Fig. 4(b)) based on the above men-
tioned rules. The PhysicalNode element is mapped to a System element, an EcuIn-
stance element, a SystemMapping element, a SoftwareComposition element, and a
CompositionType element (Rule 1). The Partition elements are mapped to the
SwcToEcuMapping elements (Rule 2), each of which is associated with the generated
EcuInstance element (Rule 3). The Module elements are mapped to the Compo-
nentPrototype elements aggregated by a CompositionType element and referred to by
their corresponding SwcToEcuMapping elements (Rules 4-5). The Scheduler element
aggregating a provided Service is mapped to a PPortPrototype element (Rule 6). The
other Scheduler element is mapped in a similar manner (Rule 7).

The transformation development follows an iterative, incremental process. First, a
simple GM model is created in the MDWorkbench model editor. Then, a transfor-
mation is implemented to transform the input GM model into an AUTOSAR model.
The AUTOSAR model is then validated and if the transformation is correct, the pro-
cess is repeated with additional types in the input model and additional transformation
rules. If the output model contains errors, the transformation is analyzed and fixed.

Validation is performed manually. For an input GM model, an expected output
AUTOSAR model is created in the MDWorkbench Model Editor. The transfor-

<<EcuInstance>>
physNode

<<CompositionType>>
physNode

<<SwcToEcuMapping>>
partition1

<<Compo-
nentPrototype>>

mod1

<<PPortPrototype>>
Sched1

<<SwcToEcuMapping>>
partition2

<<SoftwareComposition>>
physNode

<<RPortPrototype>>
Sched2

<<Compo-
nentPrototype>>

mod2

<<System>>
physNode

<<SystemMapping>>
physNode

<<PhysicalNode>>
physNode

<<Partition>>
partition1

<<Partition>>
partition2

<<Module>>
mod1

<<Scheduler>>
Sched1

<<Module>>
mod2

<<Scheduler>>
Sched2

<<Service>>
ProvSvc1

<<Service>>
ReqSvc1

8

mation‘s output model is compared with the manually-created model. Equivalence of
the models implies a correct transformation.

4.4 The Transformation Implementation Using ATL

The GM-to-AUTOSAR transformation contains two ATL matched rules and 9 func-
tional helpers implementing the 7 rules in Section 4.3. We also define 6 attribute
helpers to access the model attribute values. Table 1 lists the matched rules and func-
tional helpers and their implemented rules in Section 4.3.

Table 1. Matched rules and functional helpers and the implemented rules.

Matched Rule (MR)/ Functional Helper (FH) Corresponding Rules: Section 4.3
MR1: createComponent 4
MR2: initSysTemplate 1
 FH1: initEcuInst 1
 FH2: createSwc2EcuMappings
 FH3: initSingleSwc2EcuMapping

2-3

 FH4: addComponents 5
 FH5: getAllPPortsInEcu
 FH6: createPPort

6

 FH7: getAllRPortsInEcu
 FH8: createRPort

7

 FH9: getAllSWCinEcu 5

The matched rule createComponent maps Module elements to Compo-
nentPrototype elements. The matched rule initSysTemp maps a PhysicalNode
element to a System element, a SystemMapping element, a SoftwareComposition ele-
ment and a CompositionType element by calling the 9 functional helpers to imple-
ment rules 1-3 and 5-7. The helper initECUInst initializes an EcuInstance ele-
ment. The helper initSingleSwc2EcuMapping initializes a SwcToEcuMap-
ping instance. The helper createSwc2EcuMappings creates a list of
Swc2EcuMapping elements corresponding to all the Partition elements in the input
model. The helper getAllSwcInEcu creates the containment relation between the
CompositionType elements and the ComponentPrototype elements. The helper add-
Components creates the relation between the SwcToEcuMapping elements and their
corresponding ComponentPrototype elements. The helper getAllPPortsInEcu
creates a PPortPrototype element using the helper createPPort for Schedulers
with at least one provided Service. Similar helpers generate RPortPrototype elements.

The ATL predefined function resolveTemp connects the ComponentPrototype
elements created by the createComponent matched rule to the CompositionType
elements created by the initSysTemp matched rule.

Implementing the transformation revealed some insights on using MDWorkbench
and ATL in industrial applications. Both the GM and the AUTOSAR metamodels are
complex in structure. To process models conforming to complex metamodels, ATL
provides flexibility of using declarative and imperative constructs to implement com-

Model Transformations for Migrating Legacy Models: An Industrial Case Study 9

plex transformations. Moreover, since the output models have many relationships
among model elements, decisions on where an element should be created in the trans-
formation such that it will be accessible for the downstream transformation are re-
quired. One such example is the relation between the SoftwareComposition element
and the ComponentPrototype element. The transformation can be either specified as
one rule or modularized as many rules. Although modularization requires that the
order of the rules be consistent with their dependencies, ATL mitigates this drawback
through the resolveTemp function which allows a rule to reference the elements
that are yet to be generated by other rules regardless of their specification order.
However, the resolveTemp function makes the transformation less readable and
difficult to debug, so the function should be used only when necessary.

For validation, sample GM models were created in the MDWorkbench Model Edi-
tor, including the model in Fig. 4(a), and were used for evaluation. The output models
were verified as described in Section 4.3. The transformation was found to produce
the expected output models. Sample GM models were used for validation instead of
actual GM models since many of the actual GM models did not conform to the GM
metamodel, which represents a major challenge for adopting MDD in industrial envi-
ronments.

5 Discussion

Based on our case study, we present open issues requiring further investigation for
successful adoption of model transformations in the automotive industry. Recommen-
dations for MDD tool and language development are also discussed.

5.1 Interoperability of MDD tools

One of the major challenges encountered in our study was the lack of interoperability
between commercial tools for developing transformations. Specifying the model
transformation using ATL was not straightforward due to the formats of the manipu-
lated metamodels. ATL can only manipulate MOF [21] or Ecore [23] metamodels,
which the GM metamodel in Rhapsody native format is not compatible with. This
required the conversion of the GM metamodel to a compatible format.

MDWorkbench has a Rhapsody connector that allows importing the GM meta-
model into MDWorkbench and converting it to Ecore format. To avoid the issue of
dual license from different vendors with different licensing policies with such an ap-
proach, we addressed the problem using XMI. An Ecore metamodel is essentially an
XMI file and Rhapsody has an XMI toolkit to export Rhapsody metamodels to XMI
files. Exporting the GM metamodel using the XMI toolkit generated an XMI file that
does not conform to the Ecore meta-metamodel. To create an Ecore version, we im-
port the XMI into RulesComposer as a metamodel, which creates an Ecore metamod-
el and an Eclipse plugin project. Exporting the project from RulesComposer to
MDWorkbench as a plugin generates a registered GM Ecore metamodel.

10

Blanc et al. [5] decomposed the interoperability problem into two concerns: the
compatibility of the exchanged models, and the definition of an exchange mechanism.
Their study proposed an architecture to address these two concerns. Implementing
transformations between tools manipulating models that conform to different meta-
models was proposed in [6], [4]. Kolovos et al. [15] proposed a framework that sup-
ports composing model management tasks with software development tasks in coher-
ent workflows. Although these solutions have been integrated into IDEs, they are not
fully automated in applications. MDD tools and transformation languages deserve
further research to support easy integration and interoperability with each other.

5.2 Optimization in Model Transformations

Our transformation mapped GM models representing a deployment of the software
components on physical nodes to their equivalent AUTOSAR models. The transfor-
mation exercised one mapping between the two metamodels and generated an
AUTOSAR model reflecting the deployment configuration. From the deployment
perspective, there are other design options that may yield a more desirable deploy-
ment in the output AUTOSAR model with respect to some utility function.

Solutions exist to support optimization during the transformation. Schätz et al. [22]
proposed a formalized approach to explore the design space using rule-based trans-
formations. Intermediate models were represented using a relational formalization and
rules were represented using predicates. Drago et al. [9] proposed the QVT-Rational
framework to explore design options which optimize quality metrics. First, a domain
expert specifies the metamodels to be manipulated, the quality metrics of interest, the
quality-prediction tool chain and the method for design feedback generation. Then, a
designer specifies desirable values for quality metrics and asks QVT-Rational for
design solutions. Tools that target industry use need to support scalable design-space
exploration to aid developers in exploring design options of the generated model.

5.3 Dealing with Semantic Differences between Metamodels

Identifying which target metamodel elements best represent a given source metamod-
el element can be a difficult task. Reasons include: (1) the precise semantics of a met-
amodel may not have been documented sufficiently and only be fully known to met-
amodel developers themselves; consultation of these developers may be time consum-
ing or even impossible. (2) The lack of support in metamodel evolution often means
that the metamodels contain redundancies or inconsistencies. (3) The mapping of
source to target elements is dependent on the transformation’s purpose, because it
determines to what extent aspects of model semantics can be removed (e.g., for ab-
straction), preserved (e.g., for refactorings) or refined (e.g., for code generation).

To facilitate transformation development, techniques to (1)enforce documenting
metamodel semantics, (2) suggest mappings between metamodels using similarity
matching or "learning" [17], [20], and (3) validate transformations are of high interest.

Model Transformations for Migrating Legacy Models: An Industrial Case Study 11

6 Conclusions and Future Work

In this study, we present a solution to migrating legacy VCS design models using
model transformations in the automotive industry. The study has two major goals: (1)
exploring the practicality of using model transformations in an industrial context to
map between industrial metamodels and (2) benefitting GM by supporting automated
convergence to AUTOSAR. The implemented transformation converts domain-
specific GM models to their equivalent AUTOSAR models. We discussed the trans-
formation context in the development process. Based on our experiences, we discuss
which tool and language are appropriate for implementing the transformation, the
challenges encountered and open issues that need further investigation.

Research studies on adopting MDD in industry have been published [19], [23], but
a few investigated adopting transformations in industry. Daghsen et al. [8] trans-
formed AUTOSAR timing models to classical scheduling models to perform timing
analysis. Giese et al. [12] used triple graph grammars to synchronize between SysML
system engineering models and AUTOSAR software engineering models. Our study
differs from other studies in that the two manipulated metamodels are complex, indus-
trial metamodels, which allows us to draw realistic conclusions regarding the practi-
cality of adopting transformations in industry. Our study considers the entire trans-
formation development process, from tool and language selection to transformation
creation and validation. Future work includes extending the transformation to the full
GM metamodel and using white-box or black-box testing [11], [16] for validation.

Acknowledgements. This work is supported in part by NSERC, as part of the
NECSIS Automotive Partnership with General Motors, IBM Canada and Malina
Software Corp.

7 References

[1] Atlas Transformation Language – ATL, http://eclipse.org/atl/.
[2] AUTOSAR Consortium. AUTOSAR, http://AUTOSAR.org/.
[3] AUTOSAR Consortium. AUTOSAR System Template,

http://AUTOSAR.org/index.php?p=3&up=1&uup=3&uuup=3&uuuup=0&uuuuup=0/AU
TOSAR_TPS_SystemTemplate.pdf

[4] Bezivin, J., Brunelière, H., Jouault, F., Kurtev, I. Model engineering support for tool
interoperability. In Workshop in Software Model Engineering(WiSME), Montego Bay,
Jamaica, 2005.

[5] Blanc, X., Gervais, M.-P., Sriplakich, P. Model Bus: Towards the interoperability of
modelling tools. In Model Driven Architecture: Foundations & Applications (MDAFA),
Linköping, Sweden, vol. 3599, pp. 17-32, 2004.

[6] Brunelière, H., Cabot, J., Clasen, C., Jouault, F., Bézivin, J. Towards model driven tool
interoperability–Bridging Eclipse and Microsoft modeling tools. In European Conf. on
Modeling Foundations & Applications(ECMFA), Paris, France, vol.6138, pp.32-47, 2010.

12

[7] Cottenier, T., Berg, A., Elrad, T. The Motorola WEAVR:Model weaving in a large
industrial context. In Aspect-Oriented Software Development(AOSD), Vancouver, Canada,
2007.

[8] Daghsen, A., Chaaban, K., Saudrais, S., Leserf, P. Applying holistic distributed scheduling
to AUTOSAR Mmethodology. In Embedded Real-Time Software & Systems (ERTSS),
Toulouse, France, 2010.

[9] Drago, M., Ghezzi, C., Mirandola, R. Towards quality driven exploration of model
transformation spaces. In Model Driven Engineering Languages & Systems (MODELS),
Wellington, New Zealand, pp. 2-16, 2011.

[10] Eclipse Modelling Framework (EMF), http://wiki.eclipse.org/EMF
[11] Fleurey, F., Baudry, B., Muller, P.-A., Le Traon, Y. Qualifying input test data for model

transformations. In Software System Modelling (SoSyM) 8(2), pp. 185-203, 2007.
[12] Giese, H., Hildebrandt, S., Neumann, S. Model synchronization at work: Keeping SysML

and AUTOSAR models consistent. In Graph Transformations & Model-Driven
Engineering, vol. 5765, pp.555-579, 2010.

[13] IBM Corporation. IBM Rational Asset Manager (RAM).
http://www01.ibm.com/software/rational/products/ram/.

[14] IBM Corporation. IBM Rational Rhapsody. http://www.ibm.com/developerworks/
downloads/r/rhapsodydeveloper/index.html.

[15] Kolovos, D., Paige, R., Polack, F. A framework for composing modular and interoperable
model management tasks. In Model Driven Tool & Process Integration (MDTPI), Berlin,
Germany, 2008.

[16] Küster, J., Abd-El-Razik, M. Validation of model transformations - First experiences
using a white box approach. In Model Development, Validation & Verification (MoDeVa),
Genova, Italy, pp.62-77, 2006.

[17] Mandelin, D., Kimelman, D., Yellin, D. A Bayesian approach to diagram matching with
application to architectural models. In Intl. Conf. on Software Engineering (ICSE),
Shanghai, China, p.222–231, 2006.

[18] Sodius. MDWorkbench, http://www.mdworkbench.com/
[19] Mohagheghi, P., Dehlen, V. Where is the proof? - A review of experiences from applying

MDE in industry. In European Conf. on Model Driven Architecture: Foundations &
Applications (ECMDA-FA), Berlin, Germany, pp.432-443, 2008.

[20] Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave, P. Matching and merging
of Statechart specifications. In Intl. Conf. on Software Engineering (ICSE), Minneapolis,
USA, pp.54-64, 2007.

[21] Object Management Group (OMG): Meta Object Facility (MOF) Specification — Version
1.4, April, 2002.

[22] Schätz, B., Hölzl, F., Lundkvist, T. Design-space exploration through constraint-based
Mmodel transformation. In Engineering of Computer Based Systems (ECBS), Oxford, UK,
p.173 – 182, 2010.

[23] Steinberg, D., Budinsky, F., Paternostro, M., Merks, E. Chapter 5 Ecore Modeling
Concepts. In Eclipse Modeling Framework 2nd edn. Addison-Wesley Professional, 2009.

[24] Teppola, S., Parviainen, P., Takalo, J. Challenges in the deployment of model driven
development. In Intl. Conf. on Software Engineering Advances (ICSEA), Porto, Portugal,
pp.15-20, 2009.

