
 Abstract
This paper describes a rapid prototyping system for
extensions to an existing programming language.
Such extensions might include new language features
or might introduce notation specific to a particular
problem domain. The system consists of a dialect
description language used to specify the syntax and
semantics of extensions, and a context sensitive
syntactic transducer that automatically implements the
extensions by transforming source programs written
using them to equivalent programs in the original
unextended language. Because the transformer is
context sensitive, it is more powerful than traditional
context free preprocessors and extensible languages
and can be used to prototype language extensions
involving significantly new programming paradigms
such as object oriented programming.

Introduction
As the diversity of programming paradigms continues
to grow and the importance of problem domain
specific notation in programming languages is
increasingly accepted [1], it becomes more and more
important to be able to try out new language features
and new notation. Ideally, we should be able to
rapidly prototype the new language features in order to
benefit from user experience before full scale
production implementation and avoid expensive
modifications to the language implementation later.

Because the expense of producing complete new
language processors is prohibitive, the usual way of
conducting such prototyping experiments involves
implementing the new language features on top of an
existing base language, creating a new dialect of the
original base language. Traditionally, this has been
done using either a regular or context-free syntactic
preprocessor such as a macro processor, or by using
an extensible programming language as the base
language. These traditional solutions have several
drawbacks.

 * This work was supported by the Natural Sciences and
Engineering Research Council of Canada.

Syntactic preprocessors such as the PL/I preprocessor
[2], M4 [3] and the C preprocessor [4] generally limit the
range of possible dialects to regular or context-free
translations to the syntax of the original base language
[5]. While this is a reasonably large set, it is by no
means clear that all of the dialects we might wish to
prototype fall in this class. In particular, dialects
involving significantly new programming paradigms, such
as object oriented and generic programming, cannot be
prototyped in this way.

While the more powerful macro preprocessors and
extensible languages such as ICON [6], CLEF [7] and
Lithe [8] often allow a larger range of dialects than simply
the context free set, they tend to place limits on the
syntactic form of the dialect notation and remove that
necessary degree of freedom in the prototyping
capability. For example, macro preprocessors often limit
the syntax of new constructs to simple variants of
functional notation while extensible languages usually
limit extensions to syntactic forms which are simple
variants of the syntax of existing language features such
as functional notation and binary operators.

By contrast, the mkmac extension tool for the language
Scheme [9] provides the ability to add any desired
syntax by giving an example of the syntax and explicitly
specifying the transformation to Scheme as part of the
macro definition. By taking advantage of the inherent
self-reference capabilities afforded by its interpretive
nature (Scheme is a variant of Lisp), significantly new
language features can be added.

This paper describes TXL, a system explicitly designed
to allow easy description and automatic prototype
implementation of significantly new programming
language features and programming paradigms. The
goal of TXL is to provide an extension tool which allows
some measure of the power and flexibility of mkmac for
traditional Pascal-like compiled languages. TXL uses a
context sensitive transformation algorithm that is not
limited by the constraints typical of most other
preprocessors and extensible languages, and is driven
by a concise, readable dialect specification language
that conveniently expresses the syntax and semantics of
new language features.

1

Proc. IEEE 1988 International Conference on Computer Languages, Miami, October 1988

TXL: A Rapid Prototyping System for Programming
Language Dialects*

James R. Cordy Charles D. Halpern Eric Promislow

Department of Computing Department of Computer Science Department of Computing
and Information Science University of Toronto and Information Science

Queen's University at Kingston Toronto, Canada M5S 1A4 Queen's University at Kingston
Kingston, Canada K7L 3N6 Kingston, Canada K7L 3N6

TXL
Using the Turing programming language (or any other
operational language) as a base, TXL provides the
ability to describe the syntactic forms and run-time
model of new language dialects at a very high level,
and automatically provides an implementation of the
new dialect. Dialects are described using a specially
designed dialect description language (TXL).

Each dialect is described in two parts, the context-free
syntactic forms of the dialect (described in terms of the
syntactic forms of the base language using a BNF-like
notation), and the run time model of the dialect
(described in terms of a set of transformations to the
base language). The TXL Processor uses these
descriptions to transform source programs written in
the described dialect to programs in the base
language, which can then be compiled or interpreted
by the normal base language processor (Figure 1).

The syntactic forms of the base language itself are
described to TXL using the same BNF-like notation
used to describe syntactic forms of the dialect. The
base language syntactic description forms a data base
of syntactic forms used to describe the syntactic
structures of the dialect. For example, the syntactic
forms of the Turing base include the forms
declarationsAndStatements, variableReference,
assignmentStatement, and so on.

The semantics of the dialect are described as a set of
recursive context sensitive transformations from the
syntactic structures of the dialect to generated base
language structures.

 TXL
Processor

 Base Language
Syntactic Description

Dialect Description

Syntactic Semantic

 Dialect
Language
 Source
 Program

 Base
Language
 Source
 Program

Figure 1. Dialect Descriptions for the TXL Processor

A Trivial Example
As a simple example of the description of a dialect,
consider the addition of coalesced assignment short
forms (i.e., the "+=", "–=" etc. of C) to the Turing
language. The desired syntactic forms can be described
in terms of the Turing base forms as a replacement of
the statement syntactic form to include the original
Turing statement forms plus a new form we call
coalescedAssignment (Figure 2).

The new definition for the statement syntactic form
replaces the original Turing form in the effective
grammar of the dialect, so that the dialect accepted will
include all of original Turing plus the new coalesced
assignment statement. The form of the coalesced
assignments themselves is described using the new
syntactic form coalescedAssignment and its sub-form
coalescedOperator.

% Trivial coalesced assignment dialect;
% allows a += b etc.

% Syntactic forms

define statement % replaces Turing base
% syntactic form of same name

choose
[coalescedAssignment] % new dialect

% statement form
[assignment] % original Turing
[assert] % statement forms
 . . .
[get]

end define

define coalescedAssignment
order

[variableReference]
[coalescedOperator]= [expression]

end define

define coalescedOperator
choose + - * /

end define

Figure 2. TXL Description of the Syntactic Forms of
the Coalesced Assignment Dialect

Syntactic forms are described using a BNF-like notation
in which the keyword order indicates sequence and the
keyword choose indicates alternation. The dialect
syntactic forms are integrated into the base language
grammar by replacing an existing base language
syntactic form with a new form. In the above example,
the new form of statement replaces the original Turing
syntactic form of the same name in the dialect grammar.

2

% Trivial coalesced assignment dialect (continued)

% Semantic transformations

rule replaceCoalescedOperators
replace [statement]

V [variableReference]
Op [coalescedOperator]= E [expression]

by
V := V Op (E)

end rule

Figure 3. TXL Description of the Semantic Transforms
of the Coalesced Assignment Dialect

The semantics of the dialect are described using a set
of rules that transform the syntactic forms of the
dialect to semantically equivalent base language
structures. In this case, every occurrence of a
statement containing the dialect syntactic form
coalescedOperator is transformed to an assignment
statement using the corresponding Turing operator.

The meaning of the new syntactic form is described as
a transformation to equivalent Turing base language
code. In this case, for example, the transformation
changes the coalesced assignment a += b to the
semantically equivalent Turing statement a := a + b
(Figure 3).

Implementation of TXL
The TXL processor consists of three parts, the Parser,
the Transformer and the Deparser (Figure 4). The
TXL parser merges the base language syntactic
description and user-supplied dialect syntactic
description to form an integrated dialect language
syntactic description. The merge is done by simply
replacing each syntactic form specification (i.e.,
production) of the base language grammar by the
dialect syntactic form specification of the same name
(if any). In this way, the syntax of new dialect features
is smoothly integrated into the features of the original
base language. Using this integrated grammar of the
dialect language, the parser reads in dialect language
source programs and transforms them into dialect
language parse trees that can be manipulated by the
transformer.

As an example, the syntax of the coalesced
assignment dialect of the Turing base was specified by
simply copying the existing Turing base language
statement syntactic form into the dialect description
and adding an alternative for the new syntactic form
coalescedAssignment. The dialect's new statement
syntactic form then replaced the original Turing form in
the integrated dialect grammar, effectively adding

coalesced assignments to the dialect language syntax.

 TXL
 Parser

 Dialect
Syntactic Description

 Base Language
Syntactic Description

+ Dialect Language
Syntactic Description

Dialect Language
 Parse Tree

 Dialect
Language
 Program

 TXL
 Transformer

 Dialect
Semantic Description

Base Language
 Parse Tree

 TXL
 Deparser

 Base
Language
 Program

 Dialect Auxiliary
Implementation Routines

Figure 4. Implementation of the TXL Processor

The TXL transformer uses the dialect language semantic
transform rules to recursively transform the dialect
program parse tree to a parse tree for a base language
program with equivalent semantics. The transform is
done using a general purpose tree pattern matching
algorithm. Beginning with the main (first) transformation
rule in the dialect semantic description, the algorithm
searches the parse tree for instances of the rule's anchor
node which match the rule's pattern and replaces the
subtree of each matched instance with a new subtree for
the replacement. Other transformation rules may then
be applied to the replacement subtree in a similar
fashion, and so on, recursively applying replacements
down the tree.

As an example, the main transformation rule of the co-
alesced assignment dialect (figure 3) specifies that in
each subtree below a statement node, any subtree
matching the pattern variableReference coalescedOp-
erator = expression should be replaced by another
statement subtree containing the assignment statement
V := V Op (E) where V, Op and E are the original

3

subtrees for the variableReference, coales-
cedOperator and expression matched by the pattern.
In order to maintain the structural integrity of the parse
tree throughout the process of transformation and
allow recursively applied transforms, the replacement
subtree is re-parsed using the anchor node production
of the dialect grammar before being linked in.

Finally, the TXL deparser generates the final base
language source program by walking the base
language parse tree resulting from the transformations
using a leftmost depth-first traversal of the tree. Some
dialects, such as those introducing concurrency
primitives, may involve inclusion of auxiliary
implementation routines from a library in the generated
result as well.

A More Challenging Example
One common modern programming technique not
present in the Turing language is the ability to declare
generic (i.e., type parameterized) procedures and
functions. An obvious Turing dialect then is one which
has this feature. However, with TXL it is just as easy
to describe a dialect that alallows not just gener
procedures and functions, but arbitrary generic
declarations including generic modules, procedures,
functions, variables and types. We could imagine
using such a facility to declare generics for classic
data structures such as stacks, for example :

generic SimpleStack (someSize, someType)
type SimpleStack :

record
depth : 0 .. someSize
contents : array 1 .. someSize

of someType
end record

Later in the generic dialect program, we might
instantiate a stack or two :

% Instantiate and use a type for big
% stacks of strings
const bigDepth := 100
instance bigStackOfString :

Stack (bigDepth, string)
var bs1, bs2 : bigStackOfString

% Initialize stacks bs1 and bs2
bs1.depth := 0
bs2.depth := 0

% Push the string "hi there" on bs2
bs2.depth := 1
bs2.contents (bs2.depth) := "hi there"

% Assign the entire value of bs2 to bs1
bs1 := bs2

The TXL description of this dialect is given in Figure 5.
Two syntactic forms are added to the Turing
declaration forms. The genericDeclaration form allows
any form of declaration in the dialect (including generic
declarations themselves) to be made generic. The
instanceDeclaration form allows instances of any such

% Generic dialect of Turing;
% allows arbitrary generic declarations

% Syntactic forms

define declaration
choose

[genericDeclaration] % new dialect
% declaration form

[instanceDeclaration] % new dialect
% declaration form

[constantDeclaration] % original Turing
[typeDeclaration] % declaration

forms
 . . .
[moduleDeclaration]

end define

define genericDeclaration
order

generic [id] ([list id])
[declaration]

end define

define instanceDeclaration
order

instance [id] : [id] ([list id])
end define

% Semantic transformations

rule replaceGenerics
replace [declarationsAndStatements]

generic Gname [id] (Formals [list id])
Decl [declaration]

RestOfScope [declarationsAndStatements]
by

RestOfScope
[@fixInstantiations Gname Formals Decl]

end rule

rule fixInstantiations Gname Formals Decl
replace [declaration]

instance Iname [id] : Gname (Actuals [list id]
)

by
Decl [@simpleSubst Gname Iname]

[@simpleSubst Formals Actuals]
end rule

rule simpleSubst Old New
replace Old by New

end rule

Figure 5. TXL Description of the Generalized Generic
Dialect of Turing

generic declarations to be instantiated. The intended
semantics is that each instance of a generic declaration
declares a new object of the original generic object type,
for example, an instance of a generic type declaration
has the effect of a type declaration, an instance of a
generic procedure declaration has the effect of a
procedure declaration, and so on.

4

The semantic transformations of the dialect describe
this semantics as follows. The main rule
replaceGenerics searches in the parse tree for occur-
rences of the syntactic form declarationsAndState-
ments (i.e., the body of a Turing language scope), and
within each such occurrence (i.e., scope) finds each
generic declaration. It then replaces the remainder of
the scope of the generic declaration by the same
scope with the generic declaration removed and the
instances of the generic replaced by instantiations of
the generic. The actual replacement of instances with
instantiations of the body is achieved by the second
transformation rule, fixInstantiations.

Given as parameters the name of a declared generic,
its formal parameter list and its body declaration, the
fixInstantiations rule replaces each declaration of an
instance of the generic in the scope of its application
with a copy of the generic's body in which the name of
the generic declaration is replaced by the name of the
instance declaration and the formal parameter names
of the generic have been replaced by the actual
parameters given in the instance. Both the
substitution of the instance name for the generic name
and the substitution of the actuals for the formals is
achieved by the last transformation rule, simpleSubst.
This rule simply replaces each item in its first
parameter (which may be a list) by the corresponding
item in its second parameter over its range of
application.

As an example of the kind of transformation done by
TXL on a source program of the generic dialect,
consider the bigStackOfString example given earlier.
Given the TXL specification of Figure 5 and the
bigStackOfString example as input, the TXL processor
would output the Turing language result :

% Instantiate and use a type for big
% stacks of strings
const bigDepth := 100

type bigStackOfString :
record

depth : 0..bigDepth
contents :

array 1..bigDepth of string
end record

var bs1, bs2 : bigStackOfString

Of course, a more reasonable generic characterization
of the stack data structure would be as an abstract
data type complete with the operations Push, Pop and
Top. Because our generic dialect allows generics of
any declaration, we can also do this within the dialect
by making a generic module :

generic Stack (someSize, someType)
module Stack

export (Push, Pop, Top)

var depth : 0..someSize := 0

var contents :
array 1..someSize of someType

procedure Push (element: someType)
pre depth < someSize
depth := depth + 1
contents (depth) := element

end Push

function Top : someType
pre depth > 0
result contents (depth)

end Top

procedure Pop
pre depth > 0
depth := depth - 1

end Pop
end Stack

Instances of the generic module Stack would then them-
selves be modules with the operations StackInstance.
Push, StackInstance.Pop and StackInstance.Top.

Scope and Limitations of the Technique
The scope of possible transformations far exceeds the
examples shown above. TXL is capable of arbitrary
general pattern matching, recursive transformations,
arbitrary code motion, generation of unique new identi-
fiers and reference to auxiliary support routines. It has
been used to specify and implement several dialects of
the Turing programming language including a complex
arithmetic dialect, an object oriented programming
dialect, a SNOBOL-like pattern matching dialect and a
concurrent programming dialect with processes and
monitors.

The Turing programming language is particularly well
suited as a base language for dialects because of its
relative lack of syntactic restrictions (in particular, its lack
of ordering restrictions on declarations and statements),
its value-inherited type inference and its ability to
reference external routines. While the lack of any of
these base language features would not in theory restrict
the range of dialects that can be described, in
practice
they do help to keep the descriptions of new dialects
elegant, concise and readable.

The range of dialects that can be described using TXL is
restricted to some extent by the power of the base
language chosen. For example, using Turing or any
other Pascal-like programming language as a base does
not allow us to describe a dialect containing the
paradigm of program self-reference, because no
mapping to base language source can successfully
introduce that new concept into the execution of the
resulting base language program.

5

TXL is most suitable for rapid prototyping of new
programming constructs, notations and dialects. As
demonstrated by the examples in this paper, it is
relatively easy to make working transformations for
new features whose semantics are well understood as
run time models, but it is very difficult to make
efficient ones and that task is best left to professional
programming language implementors.

Acknowledgements
The TXL technique and dialect specification language
were designed by C.D. Halpern and J.R. Cordy at the
University of Toronto [10]. The TXL processor
implementation was prototyped by C.D. Halpern at the
University of Toronto and refined to production by E.
Promislow at Queen's University [11]. The Turing
programming language [12] [13] was designed and
implemented by R.C. Holt, J.R. Cordy, M.P. Mendell,
S.G. Perelgut and others at the University of Toronto.
The development of TXL was generously supported by
the Natural Sciences and Engineering Research
Council of Canada.

References
1. B. Hailpern, "Multiparadigm Research: A Survey of
Nine Projects", IEEE Software 3,1 (January 1986).

2. OS PL/I Checkout and Optimizing Compilers:
Language Reference Manual, Form No. GC33-0009-4,
IBM Data Processing Division, 1976.

3. B.W. Kernighan and D.M. Ritchie, "The M4 Macro
Processor", in the UNIX Programmer's Manual, Seventh
Edition, January 1979.

4. B.W. Kernighan and D.M. Ritchie, The C
Programming Language, Prentice-Hall 1978.

5. T.A. Standish, "Extensibility in Programming
Language Design", Proc. 1975 Spring Joint Computing
Conference, AFIPS 44, 1975.

6. R.E. Griswold and M.T. Griswold, The ICON
Programming Language, Prentice- Hall 1983.

7. J.M. Triance and P.J. Layzell, "CLEF - A COBOL
Language Enhancement Facility", Computation Dept.
Report 273, University of Manchester Institute of Science
and Technology, December 1982.

8. D. Sandberg, "Lithe: A Language Combining a
Flexible Syntax and Classes", Proc. 9th ACM
Symposium on Principles of Programming Languages,
Jan. 1982.

9. E. Kohlbecker, "Using mkmac", Technical Report
157, Computer Science Department, Indiana University,
May 1984.

10. C.D. Halpern, "TXL: A Rapid Prototyping Tool for
Programming Language Design", M.Sc. thesis,
Department of Computer Science, University of Toronto,
January 1986.

11. E. Promislow, "Semantic Transformations with
Syntactic Constructs: A Run-time Model for the Turing
Extender", M.Sc. thesis, Department of Computing and
Information Science, Queen's University at Kingston,
expected 1988.

12. R.C. Holt and J.R. Cordy, "The Turing Language
Report", Technical Report CSRI-153, Computer Systems
Research Institute, University of Toronto, December
1983.

13. R.C. Holt, P.A. Matthews, J.A. Rosselet and J.R.
Cordy, The Turing Programming Language: Design and
Definition, Prentice-Hall 1988.

6

