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Abstract. Traditionally computer vision and pattern recognition algorithms are 
evaluated by measuring differences between final interpretations and ground 
truth. These black-box evaluations ignore intermediate results, making it 
difficult to use intermediate results in diagnosing errors and optimization. We 
propose “opening the box,” representing vision algorithms as sequences of 
decision points where recognition results are selected from a set of alternatives. 
For this purpose, we present a domain-specific language for pattern recognition 
tasks, the Recognition Strategy Language (RSL).  At run-time, an RSL 
interpreter records a complete history of decisions made during recognition, as 
it applies them to a set of interpretations maintained for the algorithm.  Decision 
histories provide a rich new source of information: recognition errors may be 
traced back to the specific decisions that caused them, and intermediate 
interpretations may be recovered and displayed. This additional information 
also permits new evaluation metrics that include false negatives (correct 
hypotheses that the algorithm generates and later rejects), such as the 
percentage of ground truth hypotheses generated (historical recall), and the 
percentage of generated hypotheses that are correct (historical precision). We 
illustrate the approach through an analysis of cell detection in two published 
table recognition algorithms. 
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1   Introduction 
Current evaluation methods for computer vision and pattern recognition systems are 
generally black box, based solely on observing algorithm inputs and outputs. For 
example, black-box analysis is standard practice in the document recognition 
community [1][8][10][11][14][16][17]. Diagnosis of failures is difficult, since black-
box observations provide little insight into the causes of poor recognition results. In 
response to this lack of information, developers who are searching for sources of 
recognition errors typically write additional code to produce diagnostic output.  This 
is a laborious and error-prone task.  

Significant advances can be achieved through white box evaluation.  We present a 
technique that explicitly represents decision points where interpretations (recognition 
results) may be altered, and captures decision outcomes at run-time [20][23]. In this 



paper we summarize our earlier work, and present new recall and precision-based 
performance summaries for both complete strategies and individual decisions.  

As illustrated in Figure 1, decision points represent the input and output spaces for 
a decision separately from the function that makes the decision during execution.  We 
represent decision points using the Recognition Strategy Language (RSL), introduced 
in Section 2. Decision functions themselves may be implemented in any programming 
language. Section 3 presents new metrics computed using the decision history 
recorded by RSL programs during execution.  An analysis of two published 
algorithms for table-cell detection [5][7] demonstrates how the technique provides 
novel insights into algorithm performance, and valuable information for algorithm 
optimization (Section 4).   

2   The Recognition Strategy Language  
We represent algorithm decision points as a sequence of operations in the Recognition 
Strategy Language (RSL) [23].  RSL is a scripting language that coordinates the 
recognition process, maintaining a set of current interpretations while invoking 
decision functions at run time.  In RSL, what the algorithm decides is represented 
separately from how the algorithm makes the decisions (see Fig. 1).  The six primary 
decision types are adaptation of recognition parameters, classification of input 
regions (e.g. bounding boxes), segmentation of input regions, formation of relations 
among regions, rejection of parts of an interpretation, and acceptance/rejection of 
complete interpretations. 

Each decision point formally defines a decision type, decision function call, and 
the input and output space of the decision. In Fig. 2, the first decision point takes the 
set of Word regions provided in the input, and then returns one or more sets of Word 
pairs representing horizontal adjacencies (i.e. updating the binary relation hor_adj); if 

 

 
Fig. 1. An RSL decision point. Here a decision function produces n interpretations for a single 
input interpretation. Each possible decision outcome contains one or more legal alternatives for 
the decision type (e.g. valid classes for a classification). The decision-making environment 
includes a decision history, global parameter set, and RSL book-keeping operations. These 
operations control the visibility of parameters and interpretations for decision functions, verify 
outcomes, and update the history, global parameters, and interpretation set 



more than one set of Word pairs is returned, RSL produces multiple interpretations 
(see Fig. 1). This decision is made by the external function selectHorizAdjRegions, 
which is passed the Word regions and the parameter sMaxHorDistance (the prefix s 
indicates ‘static,’ i.e. a constant). The second decision point (the segment) operation 
will be applied to each of the interpretations output by the previous decision. While 
not shown here, RSL provides a simple conditional statement to prevent 
interpretations from being modified at a decision point [23].  

To ensure that decision inputs are explicit, RSL hides all interpretation elements 
and parameters not given in the decision type definition or decision function call. This 
allows dependencies between region types, relation types, and parameters to be 
determined by static analysis of RSL source code [23]. For example, at the second 
decision point (the segment decision) Word regions are visible, but the hor_adj 
relation must be indicated using the observing keyword to be visible to the external 
decision function (segmentHorizAdjRegions). Classify decisions have ‘neither’ 
(reject) defined by default. For example, Cells may be classified as Header, Entry, or 
neither at the third decision point shown in Fig. 2.  

Interpretations are represented as attributed graphs, with nodes representing 
locations for regions of interest, which may have associated types (e.g. bounding box 
ROIs labeled as Words and/or Cells), and edges representing region relationships 
[23]. For example, the built-in RSL contains relation encodes region membership, 
such as the Cell regions that belong to a Column region.   

Decision functions may be implemented in any programming language, provided 
they are 'wrapped' in order to accept interpretations and parameters from RSL and 
return text-based decision records. We have prototyped an RSL implementation using 
the TXL source transformation language [3]. 

A sequence of decisions produces an interpretation tree that RSL records through 
the history of decision outcomes (see Fig. 1), and by annotating changes directly 
within interpretations themselves. Every region and relation hypothesis in an 
interpretation is annotated with a list of the decisions that accepted or rejected it. For 
example, the annotation “H 1 -2 3” represents acceptance by decision 1, rejection
  
model regions 
 *REGION Word Cell Header     
           Entry Image 
end regions 

model relations 
 *contains adj_right close_to 
end relations 

recognition parameters 
 sMaxHorDistance 5.0  % mms 
 aMaxColSep 20.0      % mms 
 aMaxHorSep 25.0      % mms 
end parameters 

strategy main 
 relate { Word } regions with { hor_adj } using 
   selectHorizAdjRegions(sMaxHorDistance) 

 segment { Word } regions into { Cell }  
   using segmentHorizAdjRegions() 
   observing { hor_adj } relations 

 classify { Cell } regions as { Header, Entry }  
   using labelColumnHeaderAndEntries() 

 accept interpretations 
end strategy 

Fig. 2. RSL program recognizing table Cell regions from Word regions. The model section 
defines legal region and relation types. Recognition parameters are constants and variables 
used by the external decision functions.  The RSL strategy function ‘main’ defines the sequence 
of decision points, here using relate, segment, classify and accept decision types 



by decision 2, and reinstatement by decision 3 (e.g., for a Cell comprised of Word 
regions). This information is used to compute new performance metrics described in 
Sections 3-4.  

For white-box analysis of an existing program, decision points to be observed are 
coded in RSL, which invoke ‘wrapped’ decision functions called by the RSL 
program.  If analysis is based on published algorithm descriptions, then re-
implementation of the decision functions is needed; this is how we carried out the 
evaluation of table-cell detection algorithms in Section 4, using TXL to program the 
decision functions. The granularity of decision points can be chosen freely.  To model 
the system as a handful of coarse components, use a small number of decision 
functions that perform complex computations.  To model the system in greater detail, 
use a large number of simpler decision functions.   

3 Decision-Based Performance: Historical Recall and Precision 
The accuracy of individual decisions in an RSL program can be determined using the 
decision history. The RSL source location of decisions that produce false-positive and 
false-negative hypotheses can also be determined, as discussed in Section 4.  Using 
existing programming practices, it is difficult to obtain this kind of information, 
because decision points are not explicit in the code, and intermediate decision 
information is not available in the output.  

Recall and precision are commonly used metrics for evaluating detection tasks. 
Recall is the percentage of ground truth hypotheses present in an interpretation, 
whereas precision is the percentage of accepted hypotheses that match ground truth.  
We may also use historical versions of these measures, which account for rejected 
hypotheses [22]. Both conventional and historical recall and precision can be 
evaluated at any point during algorithm execution.  The relationship between 
conventional and historical recall and precision is illustrated in Fig. 3. 

Recall is defined by |TP| / |GT|, whereas precision is defined as |TP| / |A|. Historical 
recall also takes valid rejected hypotheses into account (|TP ∪ FN| / |GT|), while 
historical precision takes false negatives into account along with the complete set of 
generated hypotheses (|TP ∪ FN| / |A ∪ R|). If an algorithm never rejects hypotheses 
(R = ∅), then the conventional and historical versions of recall and precision are the 
same. Historical recall is always greater than or equal to recall: historical recall never 
decreases during execution, whereas recall can decrease as hypotheses are rejected.  
Precision measures the accuracy of accepted hypotheses, while historical precision 
measures the accuracy of generated hypotheses. 

Here we discuss only historical recall and precision.  Corresponding historical 
versions of other black-box evaluation metrics can be defined, for example, weighted 
recall and precision metrics using areas of region overlap [1][10]; Vector Detection 
Rate, Vector False Alarm Rate, and Vector Recovery Rate used in the GREC arc 
segmentation contests [19]; and other performance metrics used in document-image 
analysis competitions [2].  
 



 

A       The set of accepted hypotheses 
R       The set of hypotheses that were 

accepted and later rejected. At any 
given time, a hypothesis is accepted 
or rejected, but not both 

GT A set of ground-truth declarations 
TP The set of true positives, A ∩ GT 
FN The set of false negatives, R ∩ GT 

 

Fig. 3. Recall, Precision, Historical Recall, and Historical Precision 

4  Illustration: Evaluating Algorithms for Table-Cell Detection 
To illustrate the new information provided by white-box analysis, we present an error 
analysis for cell detection performed by two table-recognition algorithms: Handley 
[5] and Hu et al. [7], which we refer to as “the Handley algorithm” and “the Hu 
algorithm” respectively. We chose the Handley [5] and Hu [7] algorithms for our 
study because they are described in enough detail to permit replication, and exhibit a 
degree of sophistication.  

In this comparison, table-cell detection involves combining Word regions to form 
Cell regions, as illustrated in Fig. 4. For our experiments, the input contains Word 
regions, and may also contain Line regions if the table is ruled. Our evaluations use 
test data for which the ground-truth is known; difficulties with defining table ground 
truth are discussed in [6][12]. Further discussion of table recognition algorithms is 
presented in [4][9][13][18][21].  

The Handley algorithm [5] is a geometry-based approach, making no use of the 
characters contained in Word regions.  As illustrated in Fig. 5, the algorithm first 
hypothesizes that every Word region is a Cell. Cell regions are then merged in a series 
of steps using weighted projection profiles and cell adjacency relationships. 

The Hu algorithm [7] ignores lines, and Word regions are classified as alphabetic 
or non-alphabetic, based on whether more than half the characters in the region are 
alphabetic. Columns are detected using a hierarchical clustering of the horizontal 
spans of Word regions. Next the table boxhead, stub and rows are located, and then 
header cells in the boxhead are identified (shown in  Fig. 5, Decision 86).  Finally 
cells in the body of the table are identified.  We have added a simple step to define 
text-lines, by projecting Word regions onto the Y-axis and defining text-lines at gaps 
greater than a threshold value. This is necessary because the Hu algorithm is for text 
files, where text-lines are given. 

We re-implemented the Handley and Hu algorithms in RSL and TXL using the 
published descriptions in [5] and [7] (Handley: 540 lines of RSL, 5000 lines of TXL; 
Hu: 240 lines of RSL, 3000 lines of TXL, in both cases including comments). For 



both algorithms, our choice of decision points was informed by the regions and 
relations that we wished to analyze. The RSL programs may be found elsewhere [20]. 

 

      
 (a) Word and Line regions (input)                (b) Ground-truth Cell regions (ideal output) 

Fig. 4.  Illustration of the table-cell detection task used in our experiments: Word and Line 
regions (a) are analyzed to produce Cell regions, which are sets of Word regions (b). In our 
experiments, we manually delimit the Word and Line regions (a), labeling Word regions as 
alphabetic or other, and we also manually delimit the ground-truth Cell regions (b). This table 
is from page a038 of the University of Washington Database [15] 

 

   
Handley Decision 1: 
Classify Word regions as 
Cells. 

Handley Decision 13: Merge 
Cells with little horizontal 
separation and significant 
vertical overlap. 

Handley Decision 42:  
Merge Cells that are Column_ 
Headers and span Rows (e.g. 
‘Total pore space (percent)’). 

   
Handley Decision 85: 
Merge Cells sharing 
estimated line and white-
space separators for Rows 
and Columns. 

Hu Decision 86: Segment 
Words in the Boxhead into 
Column_Headers and Cells.  
Boxhead detection uses 
lexical classification, 
textlines, and columns. 

Hu Decision 93: Detect Cells 
in the body, after Textlines are 
grouped into Rows based on 
vertical separation and the 
number of non-empty columns 
in the Textline 

Fig. 5. Intermediate results for some RSL decision points changing accepted Cell hypotheses, 
for the Handley and Hu algorithms given the table in Fig. 5. Gray Cell regions are incorrect 
(false positives), and unshaded Cell regions are correct (true positives). Handley Decision 1 
accepts 75 cell hypotheses, of which 43 are incorrect.  Handley Decision 13 accepts 8 
hypotheses (of which 7 are correct) and rejects 16 hypotheses (all of which are incorrect) 



 
     (a) Handley Algorithm         (b) Hu Algorithm 

Fig. 6. Precision vs. Recall of Cell regions for the Handley (a) and Hu (b) algorithms (58 
tables).  Conventional recall and precision is shown by ‘+’, and historical recall and precision 
by a box. Historical metrics characterize generated Cell regions, including those rejected 

4.1 Detailed Error Analysis For a Single Table 

Intermediate recognition results can be easily captured when a decision-based 
algorithm representation is used.  A visual display of intermediate states is illustrated 
in Fig. 5, showing the Cell hypotheses at selected decision points in the execution of 
the Handley and Hu algorithms.  

From the recorded decision history, we can determine that Decision 42 for the 
Handley algorithm in Fig. 5 is particularly good: it accepts the only available 
hypothesis matching ground truth (the upper-right hand header cell), while rejecting 
two invalid hypotheses.  In contrast, Handley Decision 85 (the final interpretation) 
creates 6 invalid hypotheses, and rejects 12 valid hypotheses. The Hu algorithm uses 
only two decisions to identify Cell regions: Hu Decision 86 identifies header cells, 
and Hu Decision 93 identifies cells in the table body. The visualizations in Fig. 5 were 
produced directly from RSL output, which includes decision times that can be 
matched to specific decision points in the RSL source. This directly locates the part of 
the source code that caused each recognition error.  A decision that ‘causes’ an error 
in the output may have been influenced by a poor decision made earlier. Decision 
histories allow us to also observe which earlier decision points produced the 
alternatives considered at a decision point. 

4.2 Comparing Conventional and Historical Metrics for a Set of Tables  

We now compare conventional and historical recall and precision for the Handley and 
Hu algorithms, for a test set consisting of 58 tables taken from the University of 
Washington Database [15].   For the final interpretations produced by each algorithm, 
recall and precision information is shown for individual tables in Fig. 6, and for the 
test set in Fig. 7. We can see that the Handley algorithm generates far more ground 
truth cells during execution than are present in the final table interpretations.  This is 
evident from Fig. 6a: the conventional recall for the final interpretations (‘+’) is 
generally lower than the historical recall.  This is due to over-merging that follows the 
initial decision to label all Word regions as Cell regions. The Hu algorithm never 
discards Cell hypotheses, and as a result the historical and conventional recall and 



precision metrics are identical (Fig. 6b). The conventional metrics for the two 
algorithms are quite similar; the historical metrics show that the Handley algorithm 
generates many correct cells that the Hu algorithm does not. 

Fig. 8 shows changes in Cell recall and precision at each decision manipulating 
Cells in our RSL implementation of the Handley algorithm. In each plot, the center 
represents no change, with changes in conventional/historical recall shown on the Y-
axis, and changes in conventional/historical precision shown on the X-axis. Decision 
point Op-37 has a positive effect for most tables, as measured by all metrics. In 
contrast, Op-80 has little effect on historical metrics, and little or negative effect on 
conventional metrics. Finally, Op-68 was executed for 56 tables, but had no effect. 

These new performance summaries visualize patterns in what has been generated 
and thrown away, for both complete strategies and individual decision points. Along 
with the ability to identify decision points where specific errors are caused, we 
believe this information will be useful for machine learning algorithms that tune 
decision parameters in a recognition strategy, and produce new strategies by 
combining decision points from multiple strategies (e.g. via genetic algorithms). 

5  Conclusion 
The Recognition Strategy Language is a scripting language for specifying computer 
vision algorithms, separating high-level decision points from low-level decision 
functions expressed in any programming language. This decision-based approach 
captures intermediate interpretations, permitting white-box evaluation, identifying 
decisions that cause recognition errors, and analyzing the interaction of decisions. 
New metrics may be observed, such as historical recall and historical precision, 
which measure the set of all hypotheses generated as a decision point is reached. A 
combination of traditional and historical metrics can then be used to better understand 
final results and the behavior of individual decisions. 

There are some limitations to how RSL may be effectively applied. For heavily 
numerical/statistical methods, or for decisions that employ significant iteration, it 
quickly becomes impractical if one records all intermediate values and states; this can 
be avoided by representing only the inputs and outputs at the outermost level within 
RSL. Another approach would be to allow the recording of decision outcomes to be 
modified or disabled using keywords. To improve the speed with which the RSL 
observation and updating operations are implemented (see Fig. 1), we are also 
considering producing an interface to ‘wrap’ the interpretation graphs for direct use 
by decision functions in various languages. Visible interpretation elements and 
parameters would be controlled in implementations of the interface for each decision 
at compile/interpret-time. Finally, we plan to re-implement the RSL compiler to 
produce Python, which has a number of numerical libraries and interfaces to computer 
vision libraries (e.g. OpenCV) readily available. This will permit new language 
features and make RSL useful for a larger group of students and researchers.  

RSL is problem-neutral, and a variety of computer vision and pattern recognition 
algorithms can be represented using RSL. We intend to improve support for feature 
computations and matrices, develop additional metrics and evaluation methods based 
on decision histories, and explore constructing hybrid algorithms from existing 



algorithms implemented in  RSL [23], e.g., using genetic algorithms to combine and 
evolve RSL strategies.  

 
Fig. 7. Distribution of Cell detection metrics for Handley and Hu algorithms run on 58 tables. 
Shown from left to right are Hu recall and precision, Handley recall and precision, and 
historical recall and precision for the Handley algorithm. 

  
Fig. 8. Changes in precision and recall for Cell regions during execution of the Handley 
Algorithm on 58 tables. ‘+’ show conventional recall vs. precision, and boxes show historical 
recall vs. precision. Op-19 is an RSL decision labeling all Word regions as Cell regions. Op-32 
is only reached for tables classified as fully-ruled; it is executed for two tables in the test set. 
The following decisions are executed for the remaining 56 tables 
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