
Requirements Engineering manuscript No.

(will be inserted by the editor)

GaiusT: Supporting the Extraction of Rights and Obligations

for Regulatory Compliance

Nicola Zeni · Nadzeya Kiyavitskaya · Luisa Mich ·
James R. Cordy · John Mylopoulos

Received: / Accepted:

Abstract Ensuring compliance of software systems with government regulations, policies
and laws is a complex problem. Generally speaking, solutions to the problem first identify
rights and obligations defined in the law and then treat these as requirements for the
system under design. This work examines the challenge of developing tool support for
extracting such requirements from legal documents. To address this challenge, we have
developed a tool called GaiusT1. The tool is founded on a framework for textual semantic
annotation. It semi-automatically generates elements of requirements models, including
actors, rights and obligations. We present the complexities of annotating prescriptive text,
the architecture of GaiusT, and the process by which annotation is accomplished. We also
present experimental results from two case studies to illustrate the application of the tool and
its effectiveness relative to manual efforts. The first case study is based on the US Health
Insurance Portability and Accountability Act (HIPAA), while the second analyzes the Italian
accessibility law for information technology instruments.

Keywords semantic annotation · legal documents · requirements engineering · regulation
compliance problem · legal requirements · multilingual annotation.

1 Introduction

Globalization has amplified the problem of internationalizing and localizing software
systems to ensure that they comply with both international and local regulations. Different
international policies, laws and regulations, written in a wide range of languages even
within one jurisdictional entity – such as the European Union – together with privacy and
security requirements, pose serious challenges for software system developers world-wide.
In particular, IT professionals have to face the so-called regulation compliance problem,
whereby companies and developers are required to ensure that their software systems
comply with relevant regulations, either by design or through re-engineering [3].

Legal documents are written in a jargon colloquially referred to as legalese, a specialized
language that makes the elicitation of requirements from regulations a difficult task for

Address(es) of author(s) should be given

1 Named after GaiusTerentilius Harsa, a plebeian tribune who played an instrumental role in establishing
for the first time in ancient Rome a formal code of laws through the Twelve Tablets (462BC).

2 Nicola Zeni et al.

developers who lack proper legal training. Misinterpretation – for example by overlooking
an exception in a regulatory rule – can have legal consequences, as it may lead to incorrect
assignment of rights or obligations to stakeholders. Elicitation of requirements is generally
achieved in a manual and often haphazard way. Breaux, Vail and Antón [13] propose a
systematic manual process for extracting rights and obligations from legal text. Our work
seeks to augment this manual process with tool support, thereby improving productivity, as
well as quality and consistency of the output.

To accomplish this complex task, we use semantic annotation (SA) techniques, where
legal text is annotated on the basis of concepts that have been defined in terms of a
conceptual schema (aka ontology). Such techniques are used widely in the field of the
Semantic Web to generate semi-structured data amenable to automated processing from
unstructured web data. Such techniques have also been fruitfully applied in Requirements
Engineering to support partial automation of specific steps in the elicitation process [29].

This paper presents the details of an SA-based tool for requirements extraction from
legal documents. We discuss related issues and propose an engineering approach founded
on an existing framework for SA called Cerno [32]. This framework has been adapted
and extended to deal with many of the complexities of legal documents and the result is
a new tool named GaiusT. The main objective of this paper is to present GaiusT along
with its evaluation on regulatory documents written in two different languages: the U.S.
Health Insurance Portability and Accountability Act [56] (HIPAA, in English) and the
Italian accessibility law for information technology instruments (known as the Stanca
Act, in Italian) [26]. The novelty of our contributions rests in identifying a combination
of techniques adopted from research on semantic annotations, legal document processing
and software reverse engineering which together demonstrably improve productivity on
extracting requirements from legal text.

These contributions expand on an earlier paper [30], where we first outlined our
preliminary research plan, along with a first application of GaiusT. In this work we focus
on the architecture and implementation of GaiusT and expand on the experimental results
reported in [30] based on two case studies.

The rest of the paper is organized as follows. Section 2 describes the challenges of
analyzing prescriptive documents. In Section 3 we present the research baseline of this work,
while Section 4 highlights requirements for analyzing legal documents. In Section 5 we
propose a design for GaiusT to address these requirements, and elaborate on its architecture
and application from a user-centered perspective in Section 6. In Section 7 we evaluate
our proposal by applying the tool to two case studies and report the results of experiments
comparing the tool’s analysis of these laws with that of human experts. Finally, we provide
an overview and comparison with other methods and projects in the area in Section 8, and
draw conclusions in Section 9.

2 Complexities of Prescriptive Documents

Analysis of legal documents poses a number of challenges different from those found
in other documents, largely because of the special traditions and conventions of law. In
this section we report on some of the most distinctive characteristics of legal documents,
focusing in particular on laws and regulations. The handling of these characteristics forms a
part of the requirements for the GaiusT system.

The most distinctive characteristic of legal documents is that they are prescriptive [37],
and are written accordingly. This means that they express the permission of desirable and/or

GaiusT: Supporting the Extrac. of Rights and Obligations for Regulatory Compl. 3

the prohibition of undesirable behaviors and situations. The norms that they convey are
requirements that control behaviors, or possible states of affairs in the world. Consequently,
each norm has a core part called the norm-kernel which carries the essential information
conveyed by the norm. This information includes: a legal modality, a subject, an object,
conditions of applicability and exceptions. The legal modality determines the function of a
norm, which can be either an obligation or a right [60]. A right is an action that a stakeholder
is conditionally permitted to perform, an obligation is an action that a stakeholder is
conditionally required to perform. In contrast, an anti-right/anti-obligation states that a
right/obligation does not exist. The subject of a norm is the person or institution to whom
the norm is directed. The object of a norm is the act regulated by the norm, considering
the modality and other properties of the action. The conditions of applicability establish the
circumstances under which a norm is applicable. These are clauses that suspend, or in some
way modify, the principal right or obligation. In addition to these, each law contains general
rules which prescribe a norm for a large group of individuals, actions or objects, followed
by a rule that excludes specific members or subsets of these groups. Often, conditions of
applicability are modified by exceptions both for subjects and objects [44]. Exceptions can
be introduced explicitly through words such as except or contrary to, or implicitly when they
have to be inferred. For example, in “A medical savings account is exempt from taxation
under this subtitle unless such account has ceased to be a medical savings account.”, the use
of the term unless indicates an exception. One or several exceptions related to a right can
be formulated directly in a section mentioning this right, or indirectly in another part of the
law, or even in another law using cross-references. To support the markup of exceptions, we
have identified a set of terms that are commonly used to express exceptions (see Table 1).

Cross-references create links between parts of the same document (internal) or with
parts of other documents (external), and are essential to the interpretation of laws. To
unambiguously identify the parts of a document and to allow for explicit references to related
parts, legal documents are organized using a deep hierarchical structure.

To facilitate the understanding of a law, every legal document contains a declarative
part – the definition of legal terms – that defines legal concepts used in the document.
This constitutes the glossary section of a legal document, and plays a fundamental role
in its interpretation. The lack of such a declarative part can result in ambiguity and
misinterpretations.

All of these features pose serious challenges for semantic analysis. In fact, although
the vocabulary and grammar used in such documents is often restricted, inconsistent use
of terms is pervasive, mainly due to the length and complexity of the lifetime of legal
documents. Moreover, it is often the case that different parts of a legal document are written
by different people, either because of the sheer size of the document, or as a result of
subsequent modifications.

Another problem dimension arises from the multilinguality of laws applicable in a
given jurisdiction (such as the European Union). Analysis of regulations written in different
languages entails handling the different structural, syntactic and semantic issues of each
particular language.

Furthermore, the requirements obtained from several regulations must be integrated,
aligned and ranked according to the priority of the regulations they were extracted from.

Finally, inaccuracy of the analysis of legal documents must be minimal because in the
eyes of the law, there is no such thing as “near-compliance”. For example, by missing an
exception or a condition, one could bestow or deny an important right or obligation to the
wrong party.

4 Nicola Zeni et al.

3 Research baseline: Cerno

In light of the complexity of legal documents outlined above, we propose a tool-assisted
process for their annotation, which includes the following main activities: (i) Structural
analysis to handle identification of structural elements of a document, basic text constructs
and cross-references; (ii) Semantic analysis to identify normative elements of a document
such as, rights, obligations, anti-rights, anti-obligations.

In order to realize this process, we have adopted and extended the semantic annotation
framework Cerno [31], and used it as a foundation for our work. Cerno is based
on a lightweight text pattern-matching approach that takes advantage of the structural
transformation system TXL [16]. The types of problems that Cerno can address are similar
to those faced in the analysis of legal documents, such as the need to understand of
the document’s structure and the need to identify concept instances present in the text.
Moreover, experimentation with Cerno has shown it to be readily adaptable to different
types of documents [31,33,63].

In Cerno, textual annotations for concepts of interest are inferred based on a conceptual
model of the application domain. Annotation rules can be automatically or manually
constructed from this model. Such an approach factors out domain-dependent knowledge,
thus allowing for the development of a wide range of semantic annotation tools to support
different domains, document types, and annotation tasks.

Cerno’s annotation process has three phases: (1) Parse, where the structure of an input
document is processed, (2) Markup, where annotations are generated based on annotation
rules associated with concepts of the conceptual model, and (3) Mapping, which results in a
relational database containing instances of concepts, as identified by annotations.

The goal of the Parse step is to break down an input document into its structural
constituents and identify interesting word-equivalent objects, such as e-mail addresses,
phone numbers, and other basic units. Similarly to Cerno’s Parse step, structural analysis of
legal texts identifies both structural elements of the document, and word-equivalent objects.
These are basic legal concepts, such as legal actors, roles, procedures and other entities
normally defined in the Definitions section of the law.

Next, the Markup phase conducts Semantic analysis. An annotation schema specifies
the rules for identifying domain concepts by listing concept identifiers with their syntactic
indicators. These indicators can be single words and phrases, or names of previously parsed
basic entities. The annotation schema can be populated with such syntactic indicators
either through (semi-)automatic techniques that use keywords of the conceptual model –
if available – or hand-crafted from a set of examples.

Lastly, the Mapping phase of Cerno is optional and depends on how one proposes to use
generated annotations. In the analysis of legal documents, we assume that a human analyst
may want to correct or enrich tool-generated results. In this setting, annotations must remain
embedded in the documents so that the user can easily revise them using textual context.
After this revision, the annotations can be indexed and stored in a database.

Although the basic steps in Cerno clearly apply well to our problem, the annotation
process we envision for legal documents required a significant adaptation effort at the design
and implementation level in order to make the framework not only applicable in the legal
domain, but also usable by requirements engineers – and possibly legal consultants. To
this end we designed and developed the GaiusT system as an extension and specialization
of Cerno that includes new components specific to the annotation of legal documents in
different languages. To enhance the usability of the system, a GUI was added to better
support human interaction.

GaiusT: Supporting the Extrac. of Rights and Obligations for Regulatory Compl. 5

The main extensions to Cerno are described next. Firstly, although Cerno was well
adapted to the sequence-of-paragraphs form of English text – such as newspaper articles,
web pages and advertisements, it could not handle the specialized semi-formal structure of
legal texts. We therefore extended the TXL-based Cerno parser so that it can process the
nested structural form of legal documents, including numbering and nesting of sections,
paragraphs and clauses.

The labels of legal document sections are also context-dependent. For example, “clause
(b) above” implicitly refers to the one in the current paragraph and section. To resolve
this problem, the parser was enhanced with an additional TXL source transformation
step to contextualize section, paragraph and clause names to make them globally unique.
For example, the label of clause “(b)” in paragraph 2 of section 5 becomes “5.2(b)”. A
subsequent reference resolution transformation was added to use these globally unique
labels to link local and global references to the clauses, paragraphs and sections they refer to.
For example, the reference “except as in (b) above” in paragraph 2 of section 5 is resolved to
“except as in 5.2(b) above”. The set of Cerno word-equivalence patterns, which recognize
items such as phone numbers, email addresses, web URLs and the like, was extended to
recognize legal items such as regulation and law names (e.g., “42 U.S.C. – 405(a) (2006)”).

The set of concept patterns was also extended and enhanced to include terms and
language for legal obligations, rights and other concepts, and patterns were added to
recognize temporal clauses such as “within a month”.

Finally, Cerno’s word pattern specification notation was enhanced to process Italian
regular and irregular verb forms in order to enable processing of Italian legal documents.

In the following section, we describe the design of the GaiusT tool considering both the
structural and semantic analysis steps of the extended Cerno process.

4 Semantic Annotation of Legal Documents

4.1 Structural Analysis

A fundamental feature of legal documents is their deep hierarchical structure. Identifying
document structure is important to semantic annotation for two main reasons: (i) recognition
of potential annotation units, thus allowing for different annotation granularity, and (ii)
flattening the document’s hierarchical representation, consisting of sections, subsections,
etc. Annotation granularity can be defined as the fragment of text that refers to a concept
instance, or an amount of context that must be annotated together with the concept. Different
granularities can be used to address different objectives. In legal documents, for instance,
single word granularity is convenient for annotating basic concepts, such as stakeholders or
cross-references.

From a semantic viewpoint, the semi-formal structure of legal documents is used, to
support the identification of complex deontic concepts, inferring a relationship between
inferred concepts from their relative positions in the structure. The identification of structural
elements in the process of semantic annotation also improves accuracy of the results, e.g.,
by treating a list as a single object for a given statement.

In general, any document has two levels of structure, a rhetorical structure and an
abstract structure, both of which contribute to meaning [46]. According to Rhetorical
Structure Theory [35], a document can be represented as a hierarchy where some text units
are salient, while others constitute support. Abstract document structure, on the other hand,
relies on graphical visualization of the text and includes syntactic elements used for text

6 Nicola Zeni et al.

Table 1 Document structure classification
Level Text unit What

0 Word a minimal unit that can be annotated which is
normally a sequence of non-spacing symbols

1 Phrase a sequence of words delimited by punctuation symbols or
conjunctions

2 Title a sequence of words usually preceded and followed by one or
more new lines

3 Sentence a combination of two or more phrases delimited by
a fullstop

4 List two or more sentences that start with an itemized or enumerated
list and end with a punctuation symbol

5 Paragraph its start is indicated by a new line and the end is the beginning
of another new line without running to the next passage

6 Section composed of a headline followed by one or more paragraphs
7 Document corresponds to the boundaries of the file

representation [20]. Both rhetorical and abstract document structures are important for the
design of a structure analysis component.

Due to the variety of existing document formats and contexts, it is impossible to define a
common structure valid for all documents, even though several efforts have been devoted to
the problem [54]. There are several possible strategies to automatically capture the structure
of documents [61,23]. The most widely used approach is based on feature-based boundary
detection of text fragments. This approach exploits patterns, such as punctuation marks to
identify text units. These patterns are typically composed of regular expressions and include
non-printable characters such as carriage return for new line identification, symbol list or
indentation for text blocks, graphical position of certain elements such as titles, etc. To
capture the deep hierarchical structure of legal documents, we have defined a classification
of document text units, using a hierarchy where a text unit at a given level is composed of one
or more units at the next level down (Table 1). This classification facilitates the management
of a large class of heterogeneously-structured documents with the only assumption that they
are written in languages of the European family. Moreover, this classification can then be
specialized according to the type of application and granularity level needed for a particular
semantic analysis.

In GaiusT we have defined grammatical patterns, using TXL’s ambiguous context-free
grammar notation, to capture text units at different levels of this document hierarchy.

To capture the complex hierarchical structure and cross-references of legal documents,
we adopted “The Guide to Legal writing” [55] that presents styles for proper writing and
structuring of legal documents. Based on the hierarchy reported in the “The Guide to
Legal writing” we specialized our grammatical patterns (see for example Tables 5 and
10). For cross-references, since loops in cross-references chains are intractable (see for
example HIPAA paragraph 164.528(a)(2)(i)), our approach consists of recognizing and
annotating cross-references, so that the annotator can take them into account and decide on
a case-by-case basis. Special parsing rules catch both external and internal cross-references,
and a TXL transformation renames all local labels and references to be globally unique. For
example, the transformation changes list element label “(b)” of paragraph 2 of section 5 to
“5.2(b)”.

GaiusT: Supporting the Extrac. of Rights and Obligations for Regulatory Compl. 7

«abstract»
PrescribedBehavior

TemporalCondition

...

...

Anti_Obligation

Responsibility

Information

Constraint
Anti_Right

...

Obligation

...

Exception

Capability

...

Resource

Process

Right

...

Agent

...

Actor

...

Action

Task

Asset
Goal

achieve

1..*

1..*

has

has
1..*0..*

plays role

has object of

-sub_goals

-recipient

-sub_task

has

Fig. 1 The conceptual model of legal concepts

4.2 Semantic Analysis of Legal Documents

The semantic analysis of a document requires the development of a conceptual model that
represents domain information, in the case of legal documents deontic concepts. To design
the conceptual model, we used an iterative process. An initial list of important concepts
in the domain of legal texts was derived from the “The Guide to Legal writing” [55]
and norm–kernel concepts [60]. We then applied part of the Semantic Parameterization
methodology developed by Breaux and Antón [9], which defines a set of guidelines
(textual patterns) for extracting legal requirements from regulations. Our model was then
discussed with legal experts and finalized based on their recommendations. The experts
were colleagues of the Faculty of Law of the University of Trento, and they helped with the
analysis and refinements of legal concepts/terms and their interrelations.

Table 2 Syntactic indicators for deontic concepts

Concept Concept type and its indicators

Right may, can, could, permit, to have a right to, should be able to
Anti-Right does not have a right to
Obligation must, requires, should, will, would, which is charged with,

may not, can not, must not
Anti-Obligation is not required, does not restrict, does not require

The resulting model, represented in Figure 1, includes as classes only the core deontic
concepts. It leaves out others, such as penalties, that according to legal experts can be
considered as properties of the core deontic concepts. The conceptual model was used as

8 Nicola Zeni et al.

Table 3 Syntactic indicators for Exception

Concept Syntactic indicators and their occurences

Exception only (733), but (588), except (547), without (514), limit (499),
restrict (435), exclusion (369), other than (156), unless (127),
release (105), not include (98), deny (84), eliminate (78),
limited to (78), prevent (77), exempt (46), not apply to (41),
to object (35), refuse (29), not in (26), objected (25),
objection (22), outside of (20), omit (18), reject (16),
omission (15), prelude (13), rule out (12), discharge (9),
save (8), bar (5), relieve (5), exclude from (3),
besides (2), not valid (2), aside from (2), leave out (1),
restrict to (1), not listed (1), exonerate (1)

the basis for the definition of an annotation schema, as discussed in Section 6. Concepts of
the conceptual model are used to populate the annotation schema, and for each concept a set
of syntactic indicators and rules or patterns is defined. For the identification of prescribed
behaviours – rights, obligations, and their antitheses – the annotation schema employs a
set of manually constructed patterns, based on modal verbs (see Table 2). For identifying
basic concepts – such as actors, resources and actions – we reuse the Definitions section of
a legal document, where every used term is defined precisely and a reference synonym is
assigned [55,18].

Annotation of conditions of application, are represented in the conceptual model as
constraint specialized into two sub-concepts, exception and temporal condition. A list of
syntactic indicators can be generated using a combined approach that analyzes the content
of legal document with the use of lexical databases such as WordNet2 or a thesaurus3. In
our case studies we manually built a list of syntactic indicators for temporal conditions and
exceptions and integrated it with lists derived from lexical databases.

4.3 Multilingual Semantic Annotation of Legal Documents

Language diversity in the semantic annotation process is treated at three distinct levels: (i)
Structural: a text available in multiple language translations uses different character sets,
word splitting, orders of reading, layout, text units, and so on, (ii) Syntactic: the annotation
patterns and rules that are used to identify concepts need to be expressed in the language. For
example the syntactic indicators used for the concept of obligation (see Section 6) must be
revised for each new target language; (iii) Semantic: the semantic model of legal concepts
should have a language-independent representation, thus the syntactic indicators for each
concept in different languages must be carefully defined.

The structural level has been investigated in the information retrieval (IR) area and
basically amounts to segmenting text into words in different languages, using word
stemming, morphology and the identification of phrase boundaries, using punctuation
conventions. There are many tools for handling these issues. However, software developers
often underestimate the value of syntactic aspects, while a successful text analysis tool must
always cater to them. Issues related to this level are managed by the document structure
analysis as described in Section 5.

The syntactic level relates to the fact that people of different nations express the same

2 http://wordnet.princeton.edu/
3 http://thesaurus.reference.com/

GaiusT: Supporting the Extrac. of Rights and Obligations for Regulatory Compl. 9

concept in different ways. For example, working with Italian legal documents we discovered
that statements expressing an obligation normally use the present active or present passive
tense, e.g., “the organization sends a request” or “the request is sent to the user”. This
form differs from English construction of the same concept, where obligations are usually
expressed with modal verbs “must” or “should”. However, syntactic differences do not affect
the conceptual model built for the domain of legal documents since the concepts represented
are valid also for other languages than English (Figure 1). In our case studies we used the
WFL Generator and Lexical Database Manager components of GaiusT to identify types of
syntactic indicators for the concepts of the annotation schema (see Sections 7.1.1 and 7.2.1).
Such components perform statistical analysis of the documents and uses lexical database
sources of the specific language to integrate results.

The most problematic issue for annotation across languages is the semantic level,
because it has to account for alternative world-views and cultural backgrounds. The
existence of semantic vagueness, semantic mismatch and ambiguities between languages
poses several challenges [58]. The main problems related to this level are caused by proper
names, temporal and spatial conventions, language patterns, such as specific or idiomatic
ways to express certain concepts, representation of co-reference, time reference, place
reference, causal relationships, and associative relationships. For example, consider the
concept “week”: in many European countries, a week starts on Sunday and ends on Saturday,
whereas in some Eastern-European countries it starts on Monday and ends on Sunday. Thus,
the expression “by the end of the week” refers to different time frames depending on the
country. The best approach to handle semantic differences consists in developing parallel
alignments with the same methodology and the same conceptual model [50]. When using
GaiusT with English and Italian documents, such semantic differences were not essential
and did not have to be captured in the conceptual model. This section has considered some
of the issues that arise in annotating multilingual legal documents. GaiusT components were
adopted to deal with these issues. However, for other aspect such as contextual information
and implicit assumptions (i.e. ambiguities used to embrace multiple situations), a deeper
semantic analysis is required (see, for example, [17]).

5 System Architecture

This section presents the system architecture of GaiusT tool, including its components and
technologies used. The overall architecture is shown in Figure 2.

GaiusT integrates and extends existing modules of Cerno (represented in Figure 2 using
green color) by adding modules to automate text preprocessing, annotation and annotation
schema generation. The extraction process is supported by several components that start
from input documents, annotate and map the results into a database for late analysis. The
process of annotation used by Cerno is based on a hand-crafted conceptual model, specifying
domain-dependent information enriched with lexical information to support identification
of semantic categories. The enriched model is the basis for defining an annotation schema.
Taking into account that the annotation schema can change according to user interests and
goals, and that the schema has a great impact on the annotation process, we developed a
series of modules that support the generation of an annotation schema.

GaiusT has been developed on a Microsoft Windows platform using the .NET
framework (language C#). Choices about external tools and libraries such as PDF
text extractor library, or part-of-speech tagger have been mainly driven by platform
compatibility, modularity, integration and multilingual requirements.

10 Nicola Zeni et al.

GaiusT

GUI

Database Mapper

SQL Generator

Bulk Database
Loader

Evaluation
Component

Annotation Schema
Generator

GeneratorConceptual Model
parser

WFL Generator

Lexical Database
Manager

POS Manager

Annotation Schema

Pre-processing

Text Extractor

Normalizer

TXL-rule Generator

Grammar
Gen.

Semantic
Rule Gen

Document
Structure
Analyzer

Annotation
Generator

Annotation Database GUI layer

Fig. 2 Architecture of GaiusT

The architecture of GaiusT is composed of four main layers: (a) the annotation schema
layer, (b) the annotation layer, (c) the database layer and (d) the graphical user interface layer
(GUI), as shown in Figure 2. The entire system is about 50k lines of code and more than
130MBytes of size. Physically, the system includes eight main components: (1) annotation
schema generator, (2) pre-processing component, (3) TXL-rule generator, (4) document
structure analyzer, (5) annotation generator, (6) database mapper, (7) evaluation component,
and (8) GUI.

The components of the architecture are presented in following subsections, taking into
account input and output data, as well the functionality of each component.

5.1 The Annotation Schema Layer

The Annotation Schema Layer sets up the core elements for the semantic annotation (SA)
process and consists of the ANNOTATION SCHEMA GENERATOR COMPONENT. Its main input is a
conceptual model that represents the domain of the document, defined taking into account
also of the goals of the annotation. Its main output is the Preliminary Annotation Schema
(PAS). The component is implemented using a combination of C# programs and TXL
programs. The generator uses four modules to generate the preliminary annotation schema:

– The Conceptual Model Parser extracts from an XML Metadata Interchange (XMI)4

or RDF5 or OWL6 source file concepts, properties, relationships and constraints, and
produces a list of items organized in a plain text file. This module takes as input a
conceptual model generated using a CASE tool that supports the XMI UML interchange
language such as UMLSpeed, MagicDraw7, Visual Paradigm8 or Protegé9 – and returns
the skeleton of a PAS. The module is a C# library.

4 XMI is the standard language used for representing Unified Modelling Language (UML) models (http:
//www.omg.org/technology/documents/formal/xmi.htm)

5 http://www.w3.org/RDF
6 http://www.w3.org/OWL
7 http://www.magicdraw.com
8 http://www.visual-paradigm.com
9 http://protege.stanford.edu/

GaiusT: Supporting the Extrac. of Rights and Obligations for Regulatory Compl. 11

– The Word Frequency List (WFL) Generator provides an inverse frequency list of the
words from one or more input documents. First the module tokenizes the input and
removes, according to the language, stop words. The WFL Generator produces two
separated lists: one with the frequency of words of the source file and another list with
the lemma of the words and their frequency. The process of lemmatization, that reduces
inflectional forms of a word to the lemma, is realized by the lemmatizer module of
Lucene open source search engine 10 that also supports multilingualism.

– The Lexical Database Manager is an interface for lexical resources like WordNet11,
Thesaurus12 and for the multilingual definitions, Wikipedia13. The input to the module
are elements extracted from conceptual model, while the output is a list of syntactic
candidate indicators for each element of the PAS. The interface provides facilities to
query lexical resources both on-line and standalone and filter the output as for example
all the options provided by the WordNet command line program to filter the output.

– The Part-of-Speech (POS) Manager is a module that can be used to refine the syntactic
indicators of the PAS. It uses a Part-of-Speech (POS) tagger program developed by the
Institute for Computational Linguistics of the University of Stuttgart14 [51], to generate
a table with the token elements of the document and the probability of their syntactic
roles. The tokens can be used to strengthen or enrich the list of linguistic indicators. The
POS Manager supports different languages.

5.2 The Annotation Layer

The Annotation Layer includes four components: the PRE-PROCESSING COMPONENT, the
TXL-RULE GENERATOR, the DOCUMENT STRUCTURE ANALYZER and the ANNOTATION GENERATOR.
It is the core layer of the tool and it pre-processes input documents, delimits the text unit
boundaries, generates the grammar and rules for the parser and performs the annotation.

– THE PRE-PROCESSING COMPONENT extracts plain text from input documents and cleans
up unprintable characters. Text Extractor uses open source libraries15 to extract plain
text from Microsoft Word document (doc), Rich Text Format (rtf) and Adobe Acrobat
documents (pdf), while for Web pages of different formats (HTML, XHTML, PHP,
ASP, and XML structured documents) it uses a TXL program that extracts plain text
and whenever possible, preserves structural information useful for document structure
identification. The input of the component is a source file in one of the above formats
and the output is plain text. The Normalizer, based on an existing TXL module of Cerno,
normalizes the plain text document generated by the Text Extractor [28], by removing
leading characters, unprintable characters and trailing spaces, and producing as output
a text document where each line represents a phrase. The module supports the different
character sets of European languages.

– THE TXL GENERATOR COMPONENT consists of two distinct domain- independent modules
that generate TXL grammar rules and patterns. The Grammar Generator is a TXL

10 http://lucene.apache.org/java/docs/
11 http://wordnet.princeton.edu/
12 http://thesaurus.reference.com/
13 http://wikipedia.org/
14 http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
15 http://www.codeproject.com/KB/cs/PDFToText.aspx and

http://www.codeproject.com/KB/cs/DocToText.aspx.

12 Nicola Zeni et al.

program that given a PAS generates a TXL grammar file used at the annotation phase.
This module generates expansion of the lemma of syntactic indicators defined in the
Preliminary Annotation Schema. It support English and Italian language, by expanding
regular verbs and nouns with proper forms (such as ’s’ for nouns plural and third person
declension of English verb or declension of present and past regular Italian verbs with
’are’,’ere’,’ire’ suffixes). An example of such a grammar file is represented in Figure 3.
The Semantic Rule Generator generates a TXL program file with as many rules as the
number of patterns and constraints defined in the PAS.

– THE DOCUMENT STRUCTURE ANALYZER annotates text units of a given document with
XML tags delimiting its text unit boundaries. The Document Structure Analyzer is
composed of a TXL program with a set of rules, grammars and patterns, used to identify
text units. The rules and grammars are ambiguous and utilize island parsing techniques
to identify relevant parts [15]. Grammar overrides are used to express robust parsing,
and to avoid errors or exceptions due to input not explained by the grammar. The input
to the component consists of the grammar for the document structure and the normalized
plain text document. The output is a document annotated with XML tags that identify
structural elements.

– THE ANNOTATION GENERATOR is the core component of GaiusT. It embeds an extended
version of the existing Cerno annotation prototype developed in [28]. The component
runs the TXL interpreter with the program for annotation and the grammar files created
by the Grammar Rule and the Semantic Rule Generator components. The input of the
component is a semi-structured text, i.e., the result of pre-processing and structural
analysis, while the output is the text annotated in XML format with the concepts of the
conceptual model used for the annotation. The XML output document can be converted
to OWL format by using JXML2OWL16.

define Policy
[act]
| ‘group [space] ‘health [space] [plan]
| ‘implementation [space] [specification]
| [standard]
| ‘trading [space] ‘partner [space] [agreement]
| ‘covered [space] ‘functions
| ‘organized [space] ‘health [space] ‘care [space] [arrangement]

end define

Fig. 3 An example of grammar file generated by the Annotation Generator component

5.3 The Database Layer

The Database Layer includes the components that support evaluation and the mapping of
the annotation data to a relational database.

– THE DATABASE MAPPER accepts the annotated XML document and uploads it into a
database using two modules: The SQL Generator and The Bulk Database Loader. The
SQL Generator developed as part of a Master’s Thesis at Queen’s University [52], uses
a TXL program to parse an input annotated document and produces an output file with

16 http://jxml2owl.projects.semwebcentral.org/

GaiusT: Supporting the Extrac. of Rights and Obligations for Regulatory Compl. 13

SQL data definition language statements along with SQL data manipulation language
statements for an SQL Relational Database. The input to the module is an XML
document and the set of tags used for the annotation. Using these generated statements,
The Bulk Database Loader executes the SQL statements produced by SQL Generator
module according to the target relational database. The input is SQL statements and the
output is a populated relational database in a database system such as MySQL, Microsoft
SQLServer or Oracle.

– THE EVALUATION COMPONENT is developed to support the assessment of the quality of
annotation results. This component facilitates the evaluation process with the following
features: (i) Text preparation: the annotated text is organized in a table where columns
are the set of tags used for the annotation, and rows are the annotates units. For each
tag the number of occurrences in text units is reported. This representation provides
input for statistical measures of the annotated text; (ii) Comparison with the reference
annotation: the results of the GaiusT annotation, according to the evaluation framework
provided in [28], can be compared with the manual annotated document. The component
automatically compares the documents annotated by the tool with their reference
annotation, i.e., manually annotated gold standard if there is one, by calculating Recall,
Precision, Fallout, Accuracy, Error and F-measure [62]. The component accepts as input
the documents with embedded annotations and the list of tags used for the annotation.
The output of the process is provided in a database, where each evaluated document is
represented as a table. The Evaluation component is realized in C# and its input is one or
more documents annotated by GaiusT, producing as outputs tables with the evaluation
measures. The output can be exported as a spreadsheet.

5.4 The Graphical User Interface

The last layer is the Graphical User Interface (GUI) that supports the management of
the entire process of semantic annotation. In particular the GUI supports the process of
annotation orchestrating all components and modules (see Figure 4). It provides the control
over all input and output operations and parameters of every GaiusT component. The GUI
is realized using Windows Form of the Microsoft .NET platform.

The panels of the GUI are as follows:

– Project: the panel allows the control of the Annotation Project. An Annotation Project is
an XML database file that stores all references to resources used for the annotation, the
settings of the system, the input and output files of each component and the parameters
used for each component (see Figure 4).

– Settings: the panel allows to control the settings of external resources such as the TXL
programs, the database repository for storing annotation, Web resources, third party
applications such as WordNet and so on.

– Annotation Schema: this panel allows to control all the components that contribute to
the creation of the annotation schema. It is subdivided into different sections related to
different modules of the Annotation Schema component.

– Grammar: the panel allows managing the collection of grammar files used by the TXL
programs. Each item of a grammar file can be managed through a checkbox window
that permits to add, edit, or remove grammar items.

– Pre-process: the modules Text Extractor and Normalizer are controlled through this
panel. The panel manages also the Document Structure Analyzer component.

14 Nicola Zeni et al.

Table 4 Components of GaiusT: input and output data type

Component and modules Input Output

1 ANNOTATION SCHEMA GENERATOR
1.1 Conceptual Model Support – XMI file
1.2 Conceptual Model Parser XMI, RDF, or OWL file preliminary annotation schema

(structured text file)
1.3 WFL Generator plain text document(s) database with one table for each

file and an inverse word
frequent list for each input
file and an integrated
a summary inverse word
frequent list

1.4 Lexical Database Manager preliminary annotation schema table with list of syntactic
indicators for the given concepts

1.5 POS Manager plain text document list of the words with the
probabilistic syntactic role

2 PRE-PROCESSING COMPONENT
2.2 Text Extractor doc, rtf, pdf, Web pages plain text file

(HTML, Php, Asp . . .), XML
2.2 Normalizer plain extracted text cleaned plain text

3 TXL GENERATOR COMPONENT
3.1 Grammar Generator preliminary annotation schema grammar file
3.2 Semantic Rule Generator preliminary annotation schema rule file

4 DOCUMENT STRUCTURE plain text annotated document with
ANALYZER structure elements and objects

5 ANNOTATION GENERATOR annotation schema, XML annotated document
grammar file,
rule file, TXL program file,
plain text document

6 DATABASE MAPPER XML document relational database (Oracle,
MS SQL Server or MySQL)

6.1 SQL Generator XML document set of SQL statements
6.2 Bulk Database Loader set of SQL statement populated database

7 EVALUATION COMPONENT XML document(s), database with as many table
the manually annotated version as many input XML document

8 GUI – –

– Process: provides visualization and control of the steps of the SA process so that
each operation can be executed and managed independently from the others allowing
flexibility and debugging features.

– Database: the database panel provides an interface to manage the SQL Generator and
the Database Bulk Loader modules.

– Browser: this component displays the annotated document, visualizing tags in different
colors. The browser allows also other features, like for example editing the annotation
and syntax highlighting. It takes as input plain text, rich text (RTF), or Web pages
(HTML, XML, Php, Asp, etc.), and displays it, enabling also hyperlink navigation. The
visualization of the annotated document with the identified concepts is given through a
XSLT program used to transform the XML markup in a HTML document and presenting
the results in a table format. Browser can also support the requirements engineer in the
process of manual annotation by facilitating tags insertion.

– Quantitative Evaluation: this panel has functionalities to map the annotated text into a
table where each column represents the tag used, and each row annotated units. For
each tag the partial number of tags per text unit and the overall number of tags in the
document are calculated.

– Qualitative evaluation: this panel facilitates comparison of annotated files against
reference annotation (if available) and estimation of human disagreement.

GaiusT: Supporting the Extrac. of Rights and Obligations for Regulatory Compl. 15

Fig. 4 The GaiusT GUI

Table 4 lists the components of GaiusT, showing their input and output data types.

6 The GaiusT Semantic Annotation Process

On the basis of extensions of Cerno components described in Section 3, we present the
generic process of semantic annotation used by GaiusT to annotate legal documents. Each
step of the process can be carried out manually or automatically. Figure 6 shows the entire
annotation process of GaiusT including input and output of the components.

6.1 Definition of a conceptual model.

This phase is necessary if there is no pre-existing conceptual model. The process for creating
a conceptual model has been studied extensively in the literature and is supported by a
variety of tools. The construction of conceptual model of legal concepts has been presented
in Section 4.2.

6.2 Text Extraction.

Each input document is converted into plain text and normalized. This is achieved through
two steps: (a) Text extraction is performed by the Text Extractor module. This phase is
critical, especially for PDF file format, given that there are no format tags as for RTF
or HTML documents. In PDF documents, the information related to the format of the
documents are completely lost or confused and a manual intervention on text extracted by
module is required to normalize document structure; (b) The Normalization is achieved by
the Normalizer module. The output is plain text where each line represents a sentence.

16 Nicola Zeni et al.

6.3 Construction of the annotation schema.

This step creates the annotation schema elements for the Annotation component. The process
is divided into three sub-phases:

(a) Construction of the Preliminary Annotation Schema, which includes a set of concepts
and other elements extracted from the conceptual model created using XMI, RDF or OWL
languages. This preliminary schema is automatically created by using the Conceptual Model
Parser module. The PAS is structured as a plain text where the concepts, and the other
elements such as relationships, properties and constraints, are listed. The relationships are
extracted from XMI language and for each relationship a pattern is generated;

(b) Population of the Annotation Schema: The PAS is now revised by adding/filtering
out relevant indicators to generate the final version of the annotation schema. In particular,
each concept and property in the PAS needs to be enriched by syntactic indicators such
as keywords related to the concept, i.e., synonyms or hyponyms (Figure 5). The syntactic
indicators are generated by using: (1) the WFL module to produce an inverse frequency
list of keywords17 of the input document; and (2) the Lexical Database module to produce
the list of hyponyms and synonyms for each concept and property. The two lists are then
merged into one list, by removing the redundant elements. The final output is a table with
two columns: the list of concepts and the related keyword retrieved.

(c) Generation of TXL grammar and rules for the Annotation Schema: during this
step, the Annotation Schema is parsed by the Grammar Generator and the Semantic Rule
Generator, and two files are produced: a grammar in which the syntactic indicators for each
concepts are defined and a program file with all the semantic rules.

concept1: word1[opt1|opt2], word2 word3[opt3|opt4|op5],
word4, {constraint1},{constraint2};;

conceptM: word5, word6[opt1];;

conceptN: word7;;

method: verb1, verb2[opt];;

pattern1: concept1 * action * conceptM;;

pattern2: concept1 * [not] action * conceptN;;

Fig. 5 Structure of Annotation Schema

6.4 Annotation

Once the annotation schema is generated, the annotation process can be executed. It is
divided into two sub-phases: (a) The Document Structure Analysis. In this step the input
document is annotated with tags that identify the structure of the document and tags for
basic word-equivalent objects. This step is important because it establishes the granularity
of the annotation. The granularity can be controlled by the requirements engineer through

17 The stem of each keyword is considered.

GaiusT: Supporting the Extrac. of Rights and Obligations for Regulatory Compl. 17

the visual aid provided by the Grammar panel. The annotation is generated through the
Document Structure Analyzer component, which runs a TXL program with the grammar’s
items chosen in the Grammar panel. (b) The Annotation phase. The Annotation Generator
annotates the relevant items, according to the annotation schema, generated grammars and
rules. Finally, it removes the structural tags used for the boundaries identification of text
units.

6.5 Database population (optional).

The last stage of annotation, is the population of a database with annotated documents.
There are two modules that perform this operation: the SQL Generator module is used to
generate a relational database from the XML annotated documents, while the Bulk Database
Loader module loads the data into the target database. The target database can be any of the
relational databases that support the SQL92 standard18.

Annotation
Schema Gen. Database

Mapper

SQL
Generator

Bulk Loader

Document
Structure
Analyzer

Annotation
Generator

Evaluation
Component

Conceptual
Model parser

WFL
Generator

Lexical Db
Manager

POS
Manager

Pre-
processing
component

Text
Extractor

Normalizer

TXL-rule
Generator

Grammar
Generator

Semantic
Rule Gen.

Relational
Database

Annotated
legal
document

TXL
grammar
and rules

Plain text

legal doc

Text units
annotated
legal doc

Annotation
schema Report

output

Legal
document

Conceptual
model

input

Fig. 6 Annotation Process of GaiusT

7 Evaluation

To evaluate the efficacy and efficiency of the GaiusT tool, two experiments have been
conducted, one on the HIPAA Privacy Act (US, in English), and the other on the Stanca
law (Italy, in both English and Italian). Our experiments with the tool suggest that it is
scalable in the sense that it requires milliseconds to process a HIPAA section, and just a few
seconds to process and annotate all of HIPAA (approx. 147K words). In all experiments we
did, evaluation was accomplished by comparison against human performance consistently
with evaluation framework of [31]. Moreover, the comparison does not consider overhead to
set up GaiusT resources, such as the construction of the conceptual model and time used for
tuning the syntactic elements of the annotation schema. This is an one-time only overhead
for a given language and can be at least partially offset by overhead to train people so that
they are comfortable with legal concepts and the annotation process for legal documents. We

18 http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt

18 Nicola Zeni et al.

Table 5 The document structure of American Law
Level Unit Example

1 Volume VOLUME I
2 Title Title XVIII Health Insurance for the Aged . . .
3 Chapter CHAPTER III–SOCIAL SECURITY . . .
4 Subchapter Subchapter B. Transfer of Credit
5 Part PART 160 – GENERAL ADMINISTRATIVE . . .
6 Subpart Subpart A – General Provisions
7 Section §160.101 Statutory basis and purpose
8 Subsection (a) Except as otherwise provided, the standards, . . .
9 Subdivision (2) A health care clearinghouse. . .
10 Subsubdivision (i) On behalf of such covered entity . . .
11 Subsubsubdivision (A) A function or activity involving the . . .
12 Sentence Hybrid entity means a single legal entity that . . .

have not attempted a comparison of GaiusT with other tools, for pragmatic reasons. None
of the tools we reviewed has comparable features or scope with GaiusT.

7.1 The HIPAA Privacy Rule

7.1.1 Case study setup

The U.S. Health Insurance Portability and Accountability Act (HIPAA)19 is a part of
the Social Security Act. The HIPAA Privacy Rule defines standards for the protection of
personal medical records and other personal health information. To perform the structure
analysis of American laws, the Document Drafting Handbook was consulted. It contains the
style Guide to Legal writing for Regulations20 [55]. Patterns extracted for the law hierarchy
are reported in Table 5. The structure of American Law contains 12 levels and so it has
been necessary to extend the hierarchical grammar of Table 1 for the analysis of the specific
text units. The annotation schema used in this application has been focused on extracting
a set of objects of concern: right, anti-right, obligation, anti-obligation, exception [13],
and some types of conditions of application. The list of syntactic indicators for HIPAA
was constructed following the guidelines of the Semantic Parametrization methodology,
and following the process described in in Section 6, a fragment is shown in Table 6. We
have used Annotation Schema component to parse the input conceptual model and build
the Preliminary Annotation Schema populating the list of syntactic indicators with WFL
Generator, Lexical Database Manager and POS Manager.

Some of the indicators are complex patterns that combine literal phrases and basic
concepts. Thus, the identification of indicators requires a preliminary recognition of
cross-references, policies and actors. As regards cross-references, internal ones can be
consistently identified by GaiusT using the small set of patterns shown in Figure 7. External
ones were not included in the annotation schema, as we have no hints regarding what kind
of format they can be in.

19 U.S. Public Law 104–191, 110 Stat. (1996)
20 http://www.whitehouse.gov/omb/memoranda/fy2007/m07-07.pdf;
http://www.archives.gov/federal-register/write/handbook/ddh.pdf;
http://www.archives.gov/federal-register/write/legal-docs/

GaiusT: Supporting the Extrac. of Rights and Obligations for Regulatory Compl. 19

Table 6 Examples of syntactic indicators for legal requirements in HIPAA.

Concept type indicators

Right <policy> . . .</policy> permits
Obligation <actor>which is charged with

<policy> . . .</policy> requires
Anti-Obligation <actor> . . .</actor> is not required

<policy> . . .</policy> does not restrict, does not require
Temporal Constraint for the time, during, no later, within the time
Cross-Reference Constraint set by <cross-reference>, required by <cross-reference>

as (otherwise) provided in <cross-reference>, pursuant to
<cross-reference> in <cross-reference>,
under <cross-reference> . . .

The introduction section 160.103: “Definitions of HIPAA” has been used where terms are
strictly defined and reference synonyms are assigned; a fragment is shown in Figure 8. The

define citation
’§ [opt space][number][repeat enumeration] | ’paragraph [space]

[repeat enumeration] | ’paragraph [opt space][decimalnumber]
[repeat enumeration] |[decimalnumber][repeat enumeration]

end define

define enumeration
’([id] ’) | ’([number] ’)

end define

Fig. 7 The grammar for cross-reference objects.

reference word is used consistently over the entire document denoting all related terms.
For instance, the HIPAA text operates with such terms as “policy”, “business associate”,
“act”, “covered entity”, and others. In the analyzed sections of HIPAA, other terms that
could be generalized into a common, abstract type were found, including event, date and
information. Thus, on the basis of the definition section, a list of syntactic indicators for all
the basic concepts has been derived. The final list of basic concepts includes actor, policy,
event, date, and information. GaiusT has been applied to the parts numbered 160 “General
Administrative Requirements” and 164 “Security and Privacy” of the HIPAA Privacy Rule
containing a total of 33,788 words [56]. Automatic annotation of this text by GaiusT base
tool required only 3.07 seconds on an Intel Pentium 4 personal computer with a 2.60 GHz
processor and RAM 512 MB of memory running Windows XP operating system. As a
result, about 1,900 basic entities and 140 rights and obligations were identified. The manual

Actor: ANSI, business associate(s), covered entit(y|ies), HCFA, HHS, . . . ;
Policy: health information, designated record set(s), individually identifiable

health information, protected health information, . . . ;

Fig. 8 Some of the indicators for basic entities according to the information in the definitions section

evaluation of the quality of automatic results was carried out for the following sections
contained in the analyzed parts: §164.520: Notice of privacy practices for protected health

20 Nicola Zeni et al.

information; §164.522: Rights to request privacy protection for protected health information;
§164.524: Access of individuals to protected health information; and §164.526: Amendment
of protected health information. These sections were chosen because the results acquired by
GaiusT can be compared to the results of the manual analysis reported in [13]. The manual
analysis by an expert requirements engineer of the chosen fragments, containing a total
of 5,978 words or 17.8% of HIPAA, took an average of 2.5 hours per section. Figure 9
illustrates an excerpt of annotated text from §164.526(a)(2) in the HIPAA resulting from
GaiusT’s application. Each embedded XML annotation is a candidate “object of concern.”
For example, in the figure 9, the “Index” annotation denotes the sub-paragraph index “(i)”
and the Actor annotation denotes the “covered entity”; the latter appears twice in this
excerpt.

<Right>A<Actor> covered entity</Actor> may deny an <Actor> individual</Actor> ’s request for amendment,</Right>
if it determines that the <Information> protected health information</Information> or record that is the subject of the
request:
<Index> (i)</Index> Was not created by the <Actor> covered entity</Actor> ,
<Exception> unless the <Actor> individual</Actor> provides a reasonable basis to believe that the originator of
<Information> protected health information</Information> is no longer available to <Policy> act</Policy> on the
requested amendment </Exception> . . .

Fig. 9 A fragment of the result generated by GaiusT for HIPAA Sec.164.526

7.1.2 Analysis of results.

According to the evaluation framework presented in [31] in a first stage the tool and four
human expert annotators marked up sections Sec. 164.524 and Sec. 164.526. The annotated
text of this fragment of HIPAA consisted of 77 sentences. Our human annotators were
experienced in both computer science and law. The annotations performed by experts
were evaluated pairwise: each annotation was matched against all others and the results
of comparisons were aligned adopting the following criteria: (1) first, annotated concepts
were considered correct when they overlapped on most meaningful words, so that minor
divergences in text fragment boundaries were ignored; (2) then, concepts identified by
GaiusT and missed by a human annotator were manually re-visited and validated. We used
these annotations to calibrate system annotations as we consider them as an upper bound
on what automatic annotation can do. Experts reported an overall performance of 91.6%
for recall, and a precision of 82.3%. Adopting expert annotations as gold standard [6,25]
and comparing with tool annotation, the tool shows good performances with 84.8% for the
F-measure and good accuracy of 77.9% 21.

21

– Recall is a measure of how well the tool performs in finding relevant items T P
T P+FN ;

– Precision is a measure of how well the tool performs in not returning irrelevant items T P
T P+FP ;

– Fallout is a measure of how quickly precision drops as recall is increased FP
FP+T N ;

– Accuracy is a measure of how well the tool identifies relevant items and rejects irrelevant ones T P+T N
N ;

– Error is a measure of how much the tool is prone to accept irrelevant items and reject relevant ones
FP+FN

N ;
– F-measure is a harmonic mean of recall and precision 2×Recall×Precision

Recall+Precision

GaiusT: Supporting the Extrac. of Rights and Obligations for Regulatory Compl. 21

Table 7 Evaluation rates of Experts and GaiusT annotating HIPAA.

Measure Overall experts performances GaiusT calibrated with gold standard

Precision 0.83 0.84
Recall 0.92 0.87
Fallout 0.49 0.42
Accuracy 0.78 0.78
Error 0.22 0.22
F-Measure 0.86 0.85

As for the annotation of basic concepts, calculation of evaluation metrics was not
possible, as the human annotator was asked to identify only high-level deontic concepts. By
manually revising the annotated results, we can say the tool correctly identified all instances
of the concepts actor, policy, event, information and date with a precision of 91%. GaiusT
also correctly recognized section and subsection boundaries, titles and annotated paragraph
indices with a precision of 96%. These structural annotations were used to disambiguate and
manage cross-references.

On the basis of the experimental study, we can conclude that GaiusT was able to identify
legal requirements with high precision (from 93 to 100%). Good recall rates were also
demonstrated for most concepts (70 to 100%), apart from anti-obligation (33%), where the
tool’s performance must be improved.

Overall, the GaiusT tool largely reduces human effort in identifying legal requirements
by doing some of the work, also by giving hints to human annotators on how to proceed.
For example, the tool could identify constraints and subject candidates which the human
annotator could then link to identified concept instances.

7.1.3 Productivity evaluation

The goal of this application was to test the usefulness of the tool for non-experts in regulatory
text who may have to analyze such documents to generate requirements specifications
for a software system. In addition to the expert evaluation, an empirical validation of
the proposed tool against inexperienced requirements engineers has been carried out. The
problem here is that requirements engineers are not always supported by lawyers when
designing new software. For this purpose, sections Sec. 164.524 and Sec. 164.526 of HIPAA
was selected for annotation by subjects, who are not working with rules and regulations
directly. These parts were selected so that they have an approximately equal number of
statements, comprised of 1,205 words and 1,057 words respectively.

The experiment involved eighteen master-level Computer Science students taking a
software engineering course. Participants in this experiment were not familiar with legal
terms and need some training in semantically annotating legal text. A detailed explanation
of the annotation process and examples of the concepts to be identified were available.
Moreover, the participants were provided with an user-friendly interface to facilitate
insertion and modification of tags in input documents.

The setup of the experiment consisted in dividing participants into two groups, and each
group was asked to annotate Sec. 164.524 and Sec. 164.526 sections (containing a total of
2,269 words), in two different time frames. In the first time frame group one worked on
Sec. 164.524 section without annotations, while group two on section Sec. 164.526 with

Where TP is the number of items correctly assigned to the category; FP is the number of items incorrectly
assigned to the category; FN is the number of items incorrectly rejected from the category; TN is the number
of items correctly rejected from the category; and N is the total number of items N = TP + FP +FN +TN. .

22 Nicola Zeni et al.

Table 8 Average Time spent to annotate HIPAA sections by novice annotators.

Section Time spent to fully annotate Section Time spent to fix GaiusT annotations

Section 164.524 00:59:40 0:37:14
Section 164.524 01:00:14 00:42:29
Overall 00:59:57 00:39:52

Table 9 Comparing Novice results vs. Novice assisted by the tool.

Measure Novice full annotation Novice improve GaiusT annotation

Precision 0.68 0.91
Recall 0.52 0.96
Fallout 0.51 0.25
Accuracy 0.50 0.90
Error 0.50 0.10
F-Measure 0.55 0.93

annotations previously generated by GaiusT. In the second time frame the sections were
switched.

The annotators were asked to incrementally identify rule statements and their
components in each of the two texts, inserting markups on the original page for the
unannotated text, and modifying GaiusT’s output in the annotated text. Our statistics note
the time spent for annotation of both texts by each novice annotator, also the number of
different entities identified during the annotation process. Table 8 summarizes average times
spent by participants to fully annotate the two sections and average times spent to fix already
annotated sections by GaiusT. Average time saved by using the output of the tool was
33.52%, a notable saving considering that the sections are only a small fragment of the
entire law. The entire HIPAA is 147K words and assuming that annotation time depends
linearly on the size of the law, it would require almost three days for complete annotation.

Concerning the performance of novices relative to the gold standard, novices who
performed a full annotation without assistance achieved a recall of 52% and an accuracy
of 50%. By comparison, novices who simply improved the automated GaiusT annotations
reported a much higher rate of precision and recall (95% and 90% respectively) with an
accuracy of 90% (see Table 9).

This confirms that the tool is a great help for novices both in terms of productivity,
as well as quality of the results. Overall, the GaiusT tool largely reduces human effort in
identifying legal requirements by doing some of the work, also by giving hints to human
annotators on how to proceed. For example, the tool could identify constraints and subject
candidates which the human annotator could then link to identified concept instances.
Annotators generally expressed satisfaction with the GaiusT tool and the annotations it
provides, finding them easy to read and helpful in interpreting a legal document. However,
they also pointed to some areas where the tool can be improved22.

7.2 The Italian Accessibility Law

7.2.1 Case study setup.

The Italian Accessibility Law by Stanca contains a set of provisions to promote access
by disabled people to information technology instruments [26]. This law, defines a set of

22 The complete results and resources are available at https://docs.google.com/file/d/
0B7VFCr6GDi-sZE10MWJfRTRkYWc/edit?usp=sharing

GaiusT: Supporting the Extrac. of Rights and Obligations for Regulatory Compl. 23

Table 10 The document structure of Italian Law
Level Unit Usage

Italian name Pattern Example

1 Book Libro ‘Libro [num] Libro I
2 Part Parte ‘Parte [num] Parte I
3 Title Titolo ‘Titolo [num] Titolo I
4 Chapter Capo ‘Capo [num] Capo II
5 Section Sezione ‘Sezione [num] Sezione IV
6 Article Articolo ‘Art. [num] ([word]*) Art. 234 (della proprietá)
7 Clause Comma [num] ‘. [word]* 2. Il regolamento di cui al comma 1
8 Letter Lettera [char] ‘) [word]* a) i criteri e i principi operativi
9 Number Numero [num] ‘) [word]* 3) efficacia nell’uso e rispondenza
10 Text Testo [word]* Garantire che tutti gli elementi

informativi . . .

guidelines containing the different accessibility levels and technical requirements and the
technical methodologies used to verify the accessibility of Web sites, as well as the assisted
evaluation programs that can be used for this purpose. The Stanca Law was chosen because
it is available both in English and in Italian23. The availability of both language versions
allows us to perform a more fine grain analysis of the different style and syntax used in the
two documents.

For the identification of hierarchical structure for Italian law, the Italian guidelines for
Lawmaker Guida alla redazione dei testi normativi have been used [47]. The guidelines
provide suggestions about style, structure, and the type of verbs to be used to express legal
concepts. The structure of Italian law foresees 10 levels instead of the 12 of American Law,
and the naming convention used for the text units are different; thus, the hierarchy grammar
that had been developed for HIPAA had to be adapted to correspond. The analysis of the
text units that characterize the Italian law is reported in Table 10.

The grammar rules to support the interpretation of the cross-references of an Italian law
were derived from the structural elements. The TXL programs have also been extended to
deal with the Italian character set, including the accented vowels and the apostrophes used
for articles and prepositions.

The annotation schema for the SA of Italian legal documents has been designed keeping
in mind the fact that Italian law uses verbs in the present tense to express deontic concepts
and the use of modal verbs is left to the Lawmaker [47]. The syntactic indicators used for
identifing deontic concepts in American Law are partially valid, but needed to be adapted.
Two techniques have been used to address this issue: (1) the translation of modal verbs used
for the American Law; (2) the manual analysis of the text for the identification of candidate
verbs to express the concepts of right and obligation and their antis. As regards the second
technique, the POS Manager module has been used to retrieve all the present tense verbs
of the Stanca Law, and then the candidate verbs for each concept were manually annotated.
For identification of actor instances in the Italian law, we adapted two solutions: (1) some
instances were mined manually from the definition section “Definizioni”; (2) in order to
catch the actors not mentioned in the definitions, we exploited the results provided by POS
Manager, i.e., all proper nouns were marked as actors. For resource instances, we followed
only the first solution reusing the terms stated in the definition section.

23 English version reports the following note: The published text was translated in English by the
Information Systems Accessibility Office at CNIPA – National Organism for ICT in Public Administration
– with the sole aim of facilitating a better comprehension of it. The translation does not have official status,
therefore the only official text is the one published in the Official Gazette of the Italian Republic, in Italian.

24 Nicola Zeni et al.

Action acced[ere], adegu[are], alleg[are], effettu[are], gest[ire],

Resource compit[o|i], ret[e|i], immagin[e|i], indicator[e|i], indirizz[o|i],

Actor Presidente della Repubblica, Repubblica, Amministrazion[e|i],
Autorità,Cnipa, Comunità, disabil[e|i], Ministr[o|i],

Obligation dov[ere], è fatto obbligo, farla osservare, promuov[ere],

comport[are], defin[ire], applic[are], costituiscono * preferenza,
defin[ire], dov[ere], è adeguatamente motivata, è adottato, è fatto
obbligo, è * aggiornato, è subordinata, effettua, farla osservare,
favor[ire], garant[ire], indic[are], inser[ire], porre a
disposizione, predisporre, preved[ere], promuov[ere], provved[ere],

Anti

Obligation
non dov[ere], non sia, non si applica, non si possono stipulare,
non esprim[ere];; non [Obbligazione]

Right po[sso|uoi|uò|ssiamo|tete|ssono|ssa], non [Diritto];;
AntiRight non po[sso|uoi|uò|ssiamo|tete|ssono|ssa];;

Fig. 10 A fragment of entities used for identifing categories

In order to identify action verbs, we adapted the following heuristic: annotate all verbs
in present tense, passive tense and impersonal tense. The verbs in the listed forms also
refer to obligations, in accordance with the instructions for writing Italian legal documents.
Thus, the corresponding heuristic rule was adapted for identifying obligations. As for rights,
obligations and their antis, it is more difficult to identify them in the Italian language.
Unlike English, that mainly uses modal verbs to state prescriptions as for instance “the users
must present their request”, Italian regulations use present active (“gli utenti presentano
la domanda”), present passive (“la domanda è presentata”) and the passive impersonal
tense (“la domanda si presenta”) of verbs to describe an obligation. The choice of style is
highly author-dependent. Each of these styles is equally recommended by guidelines [47].
Therefore, in identifying these concepts, our strategy included (1) translation of indicators
identified by Breaux and Antón (see the list of equivalent indicators in Fig. 11), (2) in
addition, annotation of those sentences that contain verbs in the tenses that intrinsically
express obligations as instances of obligation. Fig. 10 shows the list of syntactic indicators
identified for the deontic concepts and a subset of the grammar for syntactic indicators
integrated as a domain-dependent component of Cerno which correspond to various
concepts. The annotation of the Stanca law, containing a total of 6,185 words on 280 lines,

Table 11 Syntactic indicators for Italian laws

Concept type Indicators
Right tenses of "potere"
Anti-Right tenses of "non potere"
Obligation tenses of "dovere", "obbligare"
Anti-Obligation tenses of "non dovere", "non

obbligare"
Exception "in caso di", "entro"

by GaiusT takes only 61 milliseconds on an Intel Pentium 4 personal computer with a 3 GHz
processor and 2 Gb of memory running Windows 2003 server. A fragment of the annotated
Stanca document is shown in Fig. 11.

GaiusT: Supporting the Extrac. of Rights and Obligations for Regulatory Compl. 25

Art. 10 (Regolamento di attuazione)
<Obligation>
1. <Entro novanta giorni dalla data di entrata in vigore della presente
<Policy>legge</Policy></Constraint>, con <Policy>regolamento</Policy> emanato ai sensi
dell’articolo 17, comma 1, della <Policy>legge</Policy> 23 agosto 1988, n. 400, sono
definiti:
a) i criteri e i principi operativi e organizzativi generali per l‘accessibilità;
b) i <Resource>contenuti</Resource> di cui all’articolo 6, comma 2;
c) i controlli esercitabili sugli operatori privati che hanno reso nota l’accessibilità dei
propri siti e delle proprie <Resource>applicazioni</Resource> informatiche;
d) i controlli esercitabili sui <Actor>soggetti</Actor> di cui all’articolo 3, comma 1.
2. Il <Policy>regolamento</Policy> di cui al comma 1 è adottato previa consultazione con
le associazioni delle <Actor>persone disabili</Actor> maggiormente rappresentative, con
le associazioni di sviluppatori competenti in materia di accessibilità e di produttori di
<Resource>hardware</Resource> e <Resource>software</Resource> e previa acquisizione del
parere delle competenti Commissioni parlamentari, <Constraint>che <Action>devono</Action>
pronunciarsi entro quarantacinque giorni dalla richiesta</Constraint>, e d’intesa con la
Conferenza unificata di cui all’articolo 8 del <Policy>decreto</Policy> legislativo 28
agosto 1997, n. 281. </Obligation>

Fig. 11 A fragment of the annotated Stanca law

7.2.2 Analysis of results.

To evaluate the annotation results an empirical study was designed, involving annotation
of the Stanca law, and compared the performance of the tool with manual identification of
instances of rights, obligations, and associated constraints. Table 12 presents the results of
the evaluation compared to human annotators. In the case of the HIPAA Privacy Act, the
comparison was made against human expert annotators. The human annotations were used
as the gold standard and the performance of GaiusT was calibrated against their opinions.
We have not yet measured the productivity of GaiusT for the Italian language, as the focus
of the Italian experiment was to evaluate the quality rather than the productivity of the tool
when changing language. The tool demonstrates good precision for all of the concepts,

Table 12 Evaluation rates for legal concepts found in the Accessibility Law

Measure Right Obligat. Anti- Anti- Actor Action Resource Con- Policy Total

Right Obligat. straint

Precision 1.00 0.76 - 1.00 0.67 0.88 0.74 1.00 0.87 0.77
Recall 0.33 0.42 - 0.50 0.61 0.64 0.73 0.35 0.94 0.64
F-Measure 0.50 0.54 - 0.67 0.64 0.74 0.73 0.52 0.91 0.70

ranging from the lowest 67% for Actor to the highest rate 100% for Right, Anti-Obligation
and Constraint. Recall was not as high as precision, showing the lowest rates of 33% for
Right and 35% for Constraint. This fact is caused by the lack of syntactic indicators for the
reliable identification of these concepts in Italian legal language. Instances of Anti-Right
concept were not identified in the document either by the human or tool.

Our plan for future work includes further investigation of how the identified drawbacks
can be resolved. Particular difficulties of Italian text emerged for both human and tool. For
instance, in Italian the subject is frequently omitted, as in passive forms of verbs, or hidden
by using impersonal expressions, thus making it difficult to correctly classify the whole
text regulatory fragment and find the holder of a right or of an obligation. Surprisingly, the
official English translation of the Stanca law in most cases explicitly states this information.
Consider the use of verb phrases (in bold) to state the obligation in Italian and English
versions of the same fragment, below:

26 Nicola Zeni et al.

Italian statement: “Nelle procedure svolte dai soggetti di cui all’articolo 3, comma 1, per
l’acquisto di beni e per la fornitura di servizi informatici, i requisiti di accessibilità
stabiliti con il decreto di cui all’articolo 11 costituiscono motivo di preferenza a
parità di ogni altra condizione nella valutazione dell’offerta tecnica, tenuto conto della
destinazione del bene o del servizio.

English translation: “The subjects mentioned in article 3, when carrying out procedures to
buy goods and to deliver services, are obliged, in the event that they are adjudicating
bidders which all have submitted similar offers, to give preference to the bidder which
offers the best compliance with the accessibility requirements provided for by the decree
mentioned in article 11.”

Overall, the annotation results suggest that the GaiusT process for regulation analysis is
applicable to documents that are written in different languages, English and Italian. The
effort required to adapt the framework for the new application was relatively small. This
experiment also revealed several language differences that we were able to quantify. In our
future work we plan to conduct a more extensive analysis that may remove other language
effects independently from legislator effects. As the fragment shows, in the English version
the translator disambiguated implicit information.

In general, the results of the annotation with GaiusT provide a useful input for software
engineers looking for requirements contained in regulations, rather than starting from
scratch and suggest that the GaiusT-based process for regulation analysis is applicable also
to documents written in different languages.

8 Related Work

Automatic analysis of legal documents is an old research field of Artificial Intelligence [1,
7], but due to the complexity of such documents, the goal has still not been achieved [38].
In particular, there is an intense debate on the limits of the logical representation for law in
deontic logic [24,45]. The idea of using contextual patterns or keywords to identify relevant
information in prescriptive documents is not new. A number of methodologies based on
similar techniques have been developed. However, tools to realize and synthesize these
methods under a single framework are lacking. In [14], the authors suggest an algorithm for
detection and classification of non-functional requirements (NFRs). In a pilot experiment,
the indicator terms were mined from catalogs of operationalization methods for security and
performance softgoal interdependency graphs. These indicators were then used to identify
NFRs in fifteen requirements specifications. The results have shown a satisfactory recall
and precision for the security and performance keywords. Antón proposed the Goal-Based
Requirements Acquisition Methodology (GBRAM) to manually extract goals from natural
language documents [2]. The GBRAM has been applied to financial and healthcare privacy
policies [4]. Additional analysis of the extracted goals led to new semantics for modeling
goals [9,8], which distinguish rights and obligations, and new heuristics for extracting these
artefacts from regulations [13,10]. Manually marked sections of the HIPAA [56] are used
to automatically fill in frameworks defined according to their conceptual model of laws [11].

Ghanavati et Al. report a large systematic review of goal oriented approaches to
model legal documents by reviewing 88 papers, comparing results and summarizing the
contributions and research questions in this area see [21]. Another survey of researches
in analysing legal documents for compliance requirements can be found in [41]. Among
the other issues, authors underline the need to develop a comprehensive system to support
requirements engineers in the requirement compliance task. A set of 9 high level functions

GaiusT: Supporting the Extrac. of Rights and Obligations for Regulatory Compl. 27

have been identified as relevant for such a system: annotation of legal statement is the
one addressed by GaiusT [40]. Other requirements are partially fullfielled by GaiusT,
among them, the “Semi-automated Navigation and Searching”, including cross-references
identification (see [27]) and Prioritization of Regulations and Exceptions. To facilitate
reasoning with regulations, Antoniou et al. [5] introduce the regulations analysis method
based on defeasible logic [39]. For this purpose, the facts manually found in the regulation
document are represented as defeasible rules.

Analysis of requirements texts has been automated in several ways. LIDA [42] is an
iterative model development method based on linguistic techniques. It uses a part-of-speech
tagging to derive instances of the UML abstractions. First, the tool proposes a list of
nouns as class candidates to the requirements engineer who should remove irrelevant ones,
then the list of adjectives is given for choosing relevant attributes, and finally, the list of
verbs is provided for identification of relevant methods and roles. Along similar lines, the
NL-OOPS tool was devised to support requirements analysis by generating object oriented
models from natural language requirements documents [36]. As the core technology, the
tool exploits the LOLITA system for domain-independent natural language processing [19].
In [59], the authors addressed the problem of correct identification of requirements providing
the detailed analysis of NASA requirements documents and recommendation on writing
clear specifications. As a part of this work, the authors discovered that good requirements
specifications use imperative verbs, such as shall, must, must not, and others, as in the
statements explicitly pointing out to requirements, constraints or capabilities. They also
introduced the notion of continuances, i.e., phrases that introduce the specification of
requirements at a lower level. Such phrases usually appear after the words below, as follows,
listed, etc. This analysis relates to this application to some extent, a set of heuristic rules to
detect requirements were derived by regularities in language of regulations documents. The
notion of continuances to identify complete lists was also considered in the analysis. The
proposed tool is able to identify such lists correctly and relate them to a specific upper-level
concept where they belong. In aspect-oriented requirements engineering, several methods
approach the task of identification and separation of concerns using text analysis methods.
For instance, the EA-Miner [49] tool supports separation of aspectual24 and non-aspectual
concerns and their relationships by applying natural language processing techniques to
requirements documents.

One of the early methods intended to facilitate the transition from informal to
formal requirements specifications is the Requirements Apprentice [48]. In order to avoid
dealing with the full complexity of natural language, this tool needs a mediator, a
skilled requirements engineer who enters the information obtained from the end-user in a
command-line style using a high-level language. The system then generates a formal internal
representation of a requirement from a set of statements and uses a variety of techniques to
identify ambiguities and contradictions. To address the complexity of full natural language
in general, and for legal texts too, it is often required to rewrite requirements in structured
natural language, reducing the advantages of applying automatic tools. Not rarely, this
manual pre-processing comes together with vocabulary restrictions limiting the scope of the
system to specific knowledge domain. An example of such approaches is [57]. Many tools
have developed to support the visualisation and the storage of manually annotated features.
At different level of complexity, such functionalities are offered by tools like Annozilla25,

24 Aspects are abstractions used to modularize cross-cutting concerns in software development. Examples
include such concerns as security, distribution, functionality, and real-time constraints.

25 http://annozilla.mozdev.org/index.html

28 Nicola Zeni et al.

SHOE 26, Yawas 27, and SMORE 28. However, none of them support automatic annotation,
as GaiusT annotation module does; also, most of them are limited in the input documents
they can deal with (for example, accepting only HTML documents) or in usability (for
example, requiring knowledge of a specific markup language). Beside, GaiusT allows to
track the annotation process in many ways, satisfying another requirement for an integrated
platform to support all the activities related to compliance with HIPAA and other data
privacy and security requirements [34], [12].

9 Conclusions and Future Work

We have proposed the GaiusT tool to facilitate requirements elicitation in the domain of
legal documents. The tool supports successive analysis phases, each producing a new level
of annotation. The main contribution of this work rests in the integration of a number of
techniques from Software Engineering, the Semantic Web and Natural Language Processing
to facilitate the elicitation of requirements from legal documents. Our contribution has been
evaluated through a series of experiments involving human subjects, with positive results.

There are many technical aspects of the work reported in this paper that need to be
improved in future research. In particular the population of the annotation schema with
the Annotation Schema Generator can be improved by using clustering algorithms [43,53],
or Independent Component Analysis [22].

Concerning the semantic annotation of legal documents, the syntactic indicators and
patterns used for the identification of types of constraints should be updated with a revision
of the annotation schema and indicators, and the set of patterns used for the identification
of the subjects of conjunctions or disjunctions – or, and – needs to be completed. This task
is problematic even for full-fledged linguistic analysis tools. Experimentation using other
kinds of regulation documents is also planned. In particular, contract documents are going
to be considered, in order to verify the generality of the proposed method, and improve its
effectiveness.

Finally, the multilingual aspect of SA needs to be further investigated, by considering
other languages and other types of multilingual documents, such as Web pages and news
stories.

References

1. Alchourrón, C., Bulygin, E.: Normative Systems. Springer Verlag, Wien (1971)
2. Antón, A.I.: Goal-based requirements analysis. In: Proceedings of the 2nd International Conference on

Requirements Engineering (ICRE’96), IEEE, pp. 136–144. IEEE Computer Society, Washington, DC,
USA (1996)

3. Antón, A.I., Earp, J.B., Carter, R.A.: Precluding incongruous behavior by aligning software requirements
with security and privacy policies. Information & Software Technology 45(14), 967–977 (2003)

4. Antón, A.I., Earp, J.B., He, Q., Stufflebeam, W., Bolchini, D., Jensen, C.: Financial privacy policies and
the need for standardization. IEEE Security and Privacy 2(2), 36–45 (2004)

5. Antoniou, G., Billington, D., Maher, M.J.: On the analysis of regulations using defeasible rules. In:
Proceedings of the 32nd Annual Hawaii International Conference on System Sciences (HICSS’99),
vol. 6, p. 6033. IEEE Computer Society, Washington, DC, USA (1999)

26 http://www.cs.umd.edu/projects/plus/SHOE
27 http://www.keeness.net/yawas/index.htm
28 http://www.mindswap.org/2005/SMORE

GaiusT: Supporting the Extrac. of Rights and Obligations for Regulatory Compl. 29

6. Artstein, R., Poesio, M.: Inter-coder agreement for computational linguistics. Computational Linguistics
34(4), 555–596 (2008)

7. Bing, J.: Designing text retrieval systems for conceptual searching. In: Proceedings of the 1st
International Conference on Artificial Intelligence and Law (ICAIL’87), pp. 43–51 (1987)

8. Breaux, T.D., Antón, A.I.: Analyzing goal semantics for rights, permissions, and obligations. In:
Proceedings of the 13th International Requirements Engineering Conference (IEEE’05), pp. 177–186.
IEEE Computer Society, Washington, DC, USA (2005)

9. Breaux, T.D., Antón, A.I.: Deriving semantic models from privacy policies. In: Proceedings of the
6th IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’05), pp.
67–76. IEEE Computer Society, Washington, DC, USA (2005)

10. Breaux, T.D., Antón, A.I.: Mining rule semantics to understand legislative compliance. In: Proceedings
of the 2005 ACM Workshop on Privacy in the electronic society (WPES’05), pp. 51–54. ACM Press,
New York, NY, USA (2005)

11. Breaux, T.D., Antón, A.I.: Analyzing regulatory rules for privacy and security requirements. IEEE
Transactions on Software Engineering 34(1), 5–20 (2008)

12. Breaux, T.D., Antón, A.I., Spafford, E.H.: A distributed requirements management framework for legal
compliance and accountability. Computers & Security 28(1-2), 8–17 (2009)

13. Breaux, T.D., Vail, M.W., Antón, A.I.: Towards regulatory compliance: Extracting rights and obligations
to align requirements with regulations. In: Proceedings of the 14th IEEE International Requirements
Engineering Conference (RE’06), pp. 46–55. IEEE Computer Society, Washington, DC, USA (2006)

14. Cleland-Huang, J., Settimi, R., Zou, X., Solc, P.: The detection and classification of non-functional
requirements with application to early aspects. In: Proceedings of the 14th International Requirements
Engineering Conference (RE’06), pp. 36–45. IEEE Computer Society, Washington, DC, USA (2006)

15. Cordy, J.R.: Generalized selective xml markup of source code using agile parsing. In: Proceedings of
the 11th IEEE International Workshop on Program Comprehension (IWPC’03), p. 144. IEEE Computer
Society, Washington, DC, USA (2003)

16. Cordy, J.R.: The TXL source transformation language. Science of Computer Programming 61(3),
190–210 (2006)

17. Dini, L., Peters, W., Liebwald, D., Schweighofer, E., Mommers, L., Voermans, W.: Cross-lingual legal
information retrieval using a wordnet architecture. In: Proceedings of the 10th international conference
on Artificial intelligence and law, ICAIL ’05, pp. 163–167. ACM, New York, NY, USA (2005)

18. van Engers, T.M., van Gog, R., Sayah, K.: A case study on automated norm extraction. In: Proceedings
of the 17th Annual Conference of Legal Knowledge and Information Systems (Jurix’04), pp. 49–58.
Elsevier Science Publishers B. V., Amsterdam, Netherlands (2004)

19. Garigliano, R., Morgan, R., Smith, M.: The LOLITA system as a contents scanning tool. In: Proceedings
of the 13th International Conference on Artificial Intelligence, Expert Systems and Natural Language
Processing (ICAI’93) (1993)

20. Geoffrey, N.: The linguistics of punctuation. Lecture Notes 18. Center for the Study of Language of
Information, Stanford, CA (1990)

21. Ghanavati, S., Amyot, D., Peyton, L.: A systematic review of goal-oriented requirements management
frameworks for business process compliance. In: Requirements Engineering and Law (RELAW), 2011
Fourth International Workshop on, pp. 25 –34 (2011). DOI 10.1109/RELAW.2011.6050270

22. Grant, S., Skillicorn, D., Cordy, J.R.: Topic detection using independent component analysis. In:
Proceedings of the Workshop on Link Analysis, Counterterrorism and Security (LACTS’08), pp. 23–28
(2008)

23. Groza, T., Handschuh, S., Möller, K., Decker, S.: Salt - semantically annotated $LATEX$ for scientific
publications. In: Proceedings of the 4th European Conference on The Semantic Web (ESWC’07),
Lecture Notes in Computer Science, vol. 4519, pp. 518–532. Springer-Verlag, Berlin, Heidelberg (2007).
DOI http://dx.doi.org/10.1007/978-3-540-72667-8 37

24. Horty, J.F.: Agency and Deontic Logic. Oxford University Press, New York, NY (2001)
25. Hripcsak, G., Rothschild, A.S.: Technical brief: Agreement, the f-measure, and reliability in information

retrieval. JAMIA 12(3), 296–298 (2005)
26. Italian Parliament: Stanca Act, Law. no. 4, January 9 2004: Provisions to support the access to

information technologies for the disabled. Gazzetta Ufficiale 13, Rome (17 January 2004). URL
http://www.pubbliaccesso.gov.it/normative/legge_20040109_n4.htm

27. Jeremy C. Maxwell, A.I.A., Swire, P.: Discovering conflicting software requirements by analyzing legal
cross-references. In: 19th IEEE International Requirements Engineering Conference (RE 2011), Trento
(2011). To be published

28. Kiyavitskaya, N.: Tool support for semantic annotation. Ph.D. thesis, University of Trento, Department
of Information Engineering and Computer Science (2006)

30 Nicola Zeni et al.

29. Kiyavitskaya, N., Zannone, N.: Requirements model generation to support requirements elicitation: The
secure tropos experience. Automated Software Engg. 15(2), 149–173 (2008). DOI http://dx.doi.org/10.
1007/s10515-008-0028-6

30. Kiyavitskaya, N., Zeni, N., Breaux, T.D., Antón, A.I., Cordy, J.R., Mich, L., Mylopoulos, J.: Automating
the extraction of rights and obligations for regulatory compliance. In: Proceedings of the 27th
International Conference on Conceptual Modeling (ER’08), Lecture Notes in Computer Science,
vol. 5231, pp. 154–168. Springer-Verlag, Berlin, Heidelberg (2008). DOI http://dx.doi.org/10.1007/
978-3-540-87877-3 13

31. Kiyavitskaya, N., Zeni, N., Cordy, J.R., Mich, L., Mylopoulos, J.: Cerno: Light-weight tool support for
semantic annotation of textual documents. Data & Knowledge Engineering 68(12), 1470–1492 (2009).
DOI 10.1016/j.datak.2009.07.012. URL http://dx.doi.org/10.1016/j.datak.2009.07.012

32. Kiyavitskaya, N., Zeni, N., Mich, L., Cordy, J.R., Mylopoulos, J.: Text mining through semi automatic
semantic annotation. In: Proceedings of Practical Aspects of Knowledge Management (PAKM’06),
Lecture Notes in Computer Science, vol. 4333, pp. 143–154. Springer-Verlag (2006)

33. Kiyavitskaya, N., Zeni, N., Mich, L., Cordy, J.R., Mylopoulos, J.: Annotating accommodation
advertisements using cerno. In: ENTER, pp. 389–400 (2007)

34. Lazzarotti, J.: Automating hipaa compliance tracking and audit preparation (2011).
URL http://www.workplaceprivacyreport.com/2011/11/articles/hipaa-1/
automating-hipaa-compliance-tracking-and-audit-preparation/

35. Mann, W., Matthiessen, C., Thompson, S.: Rhetorical Structure Theory and text analysis. In Mann, C.,
& Thompson, S. (eds) (1992)

36. Mich, L.: NL-OOPS: from natural language to object oriented requirements using the natural language
processing system lolita. Natural Language Engineering 2(2), 161–187 (1996)

37. Moulin, B., Rousseau, D.: Knowledge acquisition from prescriptive texts. In: Proceedings of the 3rd
International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert
Systems (IEA/AIE ’90), pp. 1112–1121. ACM Press, New York, NY, USA (1990)

38. Nakamura, M., Nobuoka, S., Shimazu, A.: Towards translation of legal sentences into logical forms. In:
Proceedings of the 2007 Conference on New frontiers in artificial intelligence (JSAI’07), Lecture Notes
in Computer Science, vol. 4914, pp. 349–362. Springer-Verlag, Berlin, Heidelberg (2008)

39. Nute, D.: Defeasible reasoning. In: Proceedings of the 20th Hawaii International Conference on Systems
Science (HICSS’87), pp. 470–477. IEEE Press (1987)

40. Otto, P.N., Antón, A.I.: The role of law in requirements engineering. Tech. Rep. TR-2007-07, North
Carolina State University (2007)

41. Otto, P.N., Antón, A.I.A.I.: Managing Legal Texts in Requirements Engineering Design Requirements
Engineering: A Ten-Year Perspectives, chap. 374-393, pp. 374–393. Springer Berlin Heidelberg (2009)

42. Overmyer, S.P., Lavoie, B., Rambow, O.: Conceptual modeling through linguistic analysis using LIDA.
In: Proceedings of the 23rd International Conference on Software Engineering (ICSE’01), pp. 401–410.
IEEE Computer Society, Washington, DC, USA (2001)

43. Periklis, A., Panayiotis, T., Renée, J.M., Kenneth, C.S.: Limbo: Scalable clustering of categorical data.
In: Proceedings of the 9th International Conference on Extending Database Technology (EDBT’04),
Lecture Notes in Computer Science, vol. 2992, pp. 123–146. Springer-Verlag, Berlin, Heidelberg (2004)

44. Pietrosanti, E., Graziadio, B.: Advanced techniques for legal document processing and retrieval.
Artificial Intelligenge and Law 7(4), 341–361 (1999)

45. Pizzo, A.: Pensiero pratico e logica deontica: assenza o presenza di razionalitá (in Italian) (2007). URL
http://www.filosofia.it. [Online; accessed 25-Feb-2008]

46. Power, R., Scott, D., Bouayad-Agha, N.: Document structure. Comput. Linguist. 29(2), 211–260 (2003).
DOI http://dx.doi.org/10.1162/089120103322145315

47. Presidenza Consiglio dei Ministri: Guida alla redazione dei testi normativi. Gazzetta Ufficiale (in Italian)
101(2), 1–80 (2001). URL http://www.guritel.it/free-sum/ARTI/2001/05/03/sommario.
html

48. Reubenstein, H.B., Waters, R.C.: The requirements apprentice: Automated assistance for requirements
acquisition. IEEE Transactions on Software Engineering 17(3), 226–240 (1991)

49. Sampaio, A., Chitchyan, R., Rashid, A., Rayson, P.: EA-Miner: a tool for automating aspect-oriented
requirements identification. In: Proceedings of the 20th IEEE/ACM International Conference on
Automated Software Engineering (ASE’05), pp. 352–355. ACM Press, New York, NY, USA (2005)

50. Sarcevic, S.: New approach to legal translation. Kluwer Law International (1997)
51. Schmid, H.: Probabilistic part-of-speech tagging using decision trees. In: Proceedings of International

Conference on New Methods in Language Processing (ICNMLP’94). Manchester, UK (1994). URL
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/

52. Shruti, A.: Relational views of XML for the semantic web. Master’s thesis, School of Computing,
Queen’s University at Kingston, Canada (2007). http://hdl.handle.net/1974/736

GaiusT: Supporting the Extrac. of Rights and Obligations for Regulatory Compl. 31

53. Souza, V., Zeni, N., Kiyavitskaya, N., Andritsos, P., Mich, L., Mylopoulos, J.: Automating the generation
of semantic annotation tools using a clustering technique. In: Proceedings of the 13th International
Conference on Natural Language and Information Systems (NLDB’08), Lecture Notes in Computer
Science, vol. 5039, pp. 91–96. Springer-Verlag, Berlin, Heidelberg (2008). DOI http://dx.doi.org/10.
1007/978-3-540-69858-6 10

54. Taylor, S.L., Dahl, D.A., Lipshutz, M., Weir, C., Norton, L.M., Nilson, R.W., Linebarger, M.C.:
Integrating natural language understanding with document structure analysis. Artif. Intell. Rev.
8(2-3), 255–276 (1994). URL http://dblp.uni-trier.de/db/journals/air/air8.html#
TaylorDLWNNL94

55. US Federal Register: Document Drafting Handbook. Federal Agency (1998). URL http://www.nara.
gov/fedreg

56. US Goverment: Standards for privacy of individually identifiable health information, 45 CFR part 160,
Part 164 subpart E. In Federal Register 68(34), 83348381 (Feb. 20, 2003)

57. Uusitalo, E., Raatikainen, M., Mannisto, T., Tommila, T.: Structured natural language requirements in
nuclear energy domain towards improving regulatory guidelines. In: Requirements Engineering and
Law (RELAW), 2011 Fourth International Workshop on, pp. 67 –73 (2011). DOI 10.1109/RELAW.
2011.6050274

58. Viegas, E.: Multilingual computational semantic lexicons in action: the WYSINNWYG approach to
NLP. In: Proceedings of the 17th International Conference on Computational Linguistics (COLING’98),
pp. 1321–1327. Association for Computational Linguistics, Morristown, NJ, USA (1998). DOI http:
//dx.doi.org/10.3115/980691.980784

59. Wilson, W.M., Rosenberg, L.H., Hyatt, L.E.: Automated analysis of requirement specifications. In:
Proceedings of the 19th International Conference on Software Engineering (ICSE’97), pp. 161–171.
ACM Press, New York, NY, USA (1997)

60. von Wright, G.H.: Norm and Action: a logical enquiry. Routledge & Kegan Paul (1963)
61. Yacoub, S., Peiro, J.A.: Identification of document structure and table of content in magazine archives. In:

Proceedings of the 8th International Conference on Document Analysis and Recognition (ICDAR’05),
pp. 1253–1259. IEEE Computer Society, Washington, DC, USA (2005). DOI http://dx.doi.org/10.1109/
ICDAR.2005.133

62. Yang, Y.: An evaluation of statistical approaches to text categorization. Information Retrieval 1(1-2),
69–90 (1999)

63. Zeni, N., Kiyavitskaya, N., Mich, L., Mylopoulos, J., Cordy, J.R.: A lightweight approach to semantic
annotation of research papers. In: Natural Language Processing and Information Systems, pp. 61–72.
Springer (2007)

