
A Transformational Framework for Testing and Model Checking Implicit
Invocation Systems1

Hongyu Zhang, Jeremy S. Bradbury, James R. Cordy, Juergen Dingel
School of Computing, Queen’s University

Kingston, Ontario, Canada
{hellen, bradbury, cordy, dingel}@cs.queensu.ca

Abstract

With the growing size and complexity of software sys-
tems, software verification and validation (V&V) is becom-
ing increasingly important. Model checking and testing are
two of the main V&V methods. In this paper, we present
a framework that allows for testing and formal modeling
and analysis to be combined. More precisely, we describe a
framework for model checking and testing implicit invoca-
tion software. The framework includes a new programming
language – the Implicit Invocation Language (IIL), and a
set of formal rule-based transformation tools that allow au-
tomatic generation of executable and formal verification ar-
tifacts. We evaluate the framework on several small exam-
ples. We hope that our approach will advance the state-of-
the-art in V&V for event-based systems. Moreover, we plan
on using it to explore the relationship between testing and
model checking implicit invocation systems and gain insight
into their combined benefits.

1. Introduction

With the growing size and complexity of software sys-
tems, software verification and validation (V&V) is becom-
ing more and more important. Testing and model check-
ing belong to the two categories of software V&V: test-
ing/inspection and formal methods. While testing focuses
on the actual behavior of the program, model checking fo-
cuses on the mathematical model. Testing and model check-
ing are complementary: testing is lightweight but incom-
plete while model checking is more heavyweight but com-
plete. A major problem with testing and model checking is
that they usually require different software artifacts. Infact,
there is often a large semantic gap between the software
developer artifacts that are tested and the artifacts that are

1This work is supported by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) and the Ontario Graduate Scholarship
Program (OGS).

accepted by model checkers. The gap between artifacts typ-
ically has to be bridged by humans with little tool support.
Thus, there is a possibility for spurious results when the
finite-state model does not correspond exactly to the soft-
ware system.

To alleviate this problem, we have developed a transfor-
mational framework for the testing and model checking of
implicit invocation (II) or publish-subscribe systems. IIsys-
tems are event-based and have two primitives. First, compo-
nents can announce or publish events. Second, other com-
ponents can listen or subscribe to events that are announced.
A centralized message server or event dispatcher receives
announced events and uses them to invoke the appropriate
subscriber methods. We have chosen to focus on II systems
for several reasons. In the context of testing, II systems
feature a lot of non-determinism due to concurrent execu-
tion of components and the event dispatcher. In the context
of model checking, this non-determinism often causes the
model to be excessively large. Additionally, II has become
increasingly popular as an event-based architecture.

Our framework includes a new programming language
– the Implicit Invocation Language (IIL). IIL is a special-
purpose language that is designed specifically for software
systems that use the II architectural style. The primary ad-
vantage of IIL for programming II systems is that it lever-
ages our knowledge about II and provides a notation with a
level of abstraction that is convenient to read and write.

Rather than write a compiler, we have chosen to imple-
ment IIL for simulation and testing by source transforma-
tion to an existing executable language. We have chosen
to translate II into Turing Plus, a concurrent programming
language [11].

Model checking systems written in IIL involves the use
of an existing II model checking system originally devel-
oped by Garlan and Khersonsky [6, 7] that we have ex-
tended in [2]. This system involves representing an II sys-
tem in an XML intermediate representation that is translated
into a finite state machine which is analyzed by a standard
model checker. The model checker allows for the analysis



IIL Program, I

with property in LTL, P

Turing Plus Program, T
XML Representation of  II

Program, X

with property in LTL, P

Finite State Machine, M

with property in LTL, P

FORMAL ANALYSIS

USING MODEL

CHECKER

EXECUTION AND

TESTING

Transformation

         (I -> X)

Transformation

Transformation

(X -> M)

(I -> T)

Figure 1. Our transformational framework

of Linear Temporal Logic (LTL) properties. We integrate
our previous model checking approach with IIL by provid-
ing an automated transformation from IIL into the XML in-
termediate representation.

Figure 1 shows the overall structure of our transforma-
tional framework. All of our transformation tools are imple-
mented using TXL, a programming language and rapid pro-
totyping system specifically designed to support rule-based
source to source transformation [5]. Each tool is fully au-
tomated and is based on formal rewriting rules expressed
in terms of the syntax of the source language and the tar-
get language. The framework allows for a powerful com-
bination of two complementary V&V techniques. We hope
that our automated approach will allow us to explore the
relationship between testing and model checking and gain
insight into the possible benefits of their combined use.

We will next provide an overview of the II architectural
style in Section 2 before introducing IIL in Section 3. In
Section 4 we will discuss the execution and testing of II
systems using Turing Plus and in Section 5 we will discuss
model checking II systems. Section 6 describes our eval-
uation of the framework and Section 7 discusses how our
framework relates to existing research work. Finally, we
outline our conclusions as well as possible future work in
Section 8.

2. II systems

An II system is characterized by six parameters: com-
ponents, events, event-method bindings, an event delivery
policy, a shared state, and a concurrency model.

Events are the primary method of communication be-

tween components. The components in the system can
announce events. Upon receiving events from the com-
ponents, the event dispatcher sends the events out to all
subscriber components that have requested to receive that
particular type of event (Figure 2). The correspondence
between events that are announced and the methods in a
component instance that are invoked in response to these
announcements is defined in the event-method bindings.
Event-method bindings instruct the dispatcher where to
send events. The event delivery policy, a set of conditional
delivery rules, instructs the dispatcher when and how to
send them.

Shared State
Component

N

Component

1 . . . 

InterfaceInterface

Event

Dispatcher

Environment

(external event source)

Delivery

Policy

Shared Data Exchange

Event Announcement

Event Delivery

Figure 2. II system structure [6]

3. An II language (IIL)

IIL is a programming language designed especially for
expressing II systems. IIL includes the following spe-
cial features: component declarations, event declarations,
announcement statements, dispatcher declaration, delivery
statements, event-method bindings, and property declara-
tions. We will now discuss these features in the context of
a Set-Counter example [17]. The Set-Counter example in
IIL is presented in Figure 3. Due to space limitations, this
example has been elided and is provided primarily to show
the main features and overall structure of an IIL program.

The Set-Counter system involves two examples of com-
ponent declaration: aSet and aCounter. TheSet com-
ponent contains a set of objects and theCounter compo-
nent keeps a count of the objects in the set. Figure 3 shows
the IIL representation of theSet component. All compo-
nents in IIL can have variables which describe component
properties and methods which describe actions.

The Set-Counter example contains four event declara-
tions. Two of the declared events (EnvAdd, EnvRemove)
are external events (also called environment events). The
declarations contain an event name and event announce-
ment properties. Environment events represent external be-



system SetAndCounter {
external event EnvAdd {1..N}, EnvRemove {1..N};
event Insert(int {1..2} numElements);
event Delete(int {1..2} numElements);

dispatcher delivers Insert, Delete {
if (Insert.count > Delete.count) {

deliver Immediate Insert;
deliver Random Delete;

}
else {

deliver Random Insert;
deliver Immediate Delete;

}
}

int {0..3} setSize;

SetAndCounter() {
Set s = new Set();
Counter c = new Counter();

bind EnvAdd to s.Add();
bind EnvRemove to s.Remove();
bind Insert to c.CountIns(Insert.numElements);
bind Delete to c.CountDel(Delete.numElements);

property AlwaysCatchesUp =
(G F (setSize = c.counter));

property ...
}

component Set
announces Insert, Delete
accepts EnvAdd, EnvRemove {
int {0..2} value;

Add() {
value = {1,2}; //nondeterministic choice
if ((setSize + value) < 4) {

setSize = setSize + value;
announce Insert(value);

}
}

Remove() {
...

}
}

component Counter
accepts Insert, Delete {
int {0..3} counter = 0;

CountIns(int {1..2} number) {
counter = counter + number;

}

CountDel(int {1..2} number) {
...

}
}

}

Figure 3. The Set-Counter example in IIL

havior that can affect the II system. The other two declared
event are local events (Insert, Delete) which are de-
clared with an event name and optional event data.

Components in an IIL program can contain announce-
ment statements which define the announcement of locally
declared events. For example, in the componentSet the
Insert event is announced in theAdd method.

In addition to components and events, a dispatcher is
declared. The dispatcher is responsible for event delivery
and defines the delivery policy. Environment events will be
delivered immediately by the dispatcher while local events
will be delivered according to the delivery policy, which is
composed of delivery statements. In our Set-Counter exam-
ple we have included a delivery policy which states that if
there are currently moreInsert events waiting to be de-
livered thanDelete events, then anInsert event is de-
livered immediately and aDelete event is delivered ran-
domly (i.e., delivered sometime in the future). Otherwise
the opposite occurs.

Event-method bindings are needed to register the meth-
ods to the events for event delivery. For example, in the Set-
Counter example we see that theEnvAdd event is bound to
theAdd method in the Set components. That is, when an
EnvAdd event is announced theAdd method ins will be
invoked.

In addition to the special language features used to con-
struct an II system, IIL also allows for LTL property dec-
larations. The properties that are declared can be veri-

fied using our model checking process. For example the
propertyAlwaysCatchesUp in the Set-Counter example
states that the global variablesetSizewill always eventu-
ally be equivalent to thecounter variable in the Counter
componentc.

4. Translating IIL programs into executable
Turing Plus programs

As previously mentioned, IIL has no compiler and re-
quires transformation to an executable language for testing
and simulation. We have chosen to transform IIL into Tur-
ing Plus, an extension of the programming language Tur-
ing [10]. We decided to use Turing Plus for execution of II
systems because Turing Plus, as a concurrent programming
language [11], has a simple and general concurrency model.

Before implementing our automated transformation
from IIL to Turing Plus we first had to develop a model
of II in Turing Plus that captured the semantics of an IIL
program. The two main design issues in developing this
model were: implicit method invocation and the concur-
rency model.

4.1. Implicit method invocation

Turing Plus does not support II directly. The first prob-
lem we need to solve is to find a mechanism to carry out II
in Turing Plus.



According to Garlan and Scott, “implicit invocation sup-
plements, rather than supplants, explicit invocation” [8]. In
our Turing Plus model, we take this approach and use three
steps of explicit invocation to implement II (see Figure 4).
That is, an explicit method call is used in event announce-
ment, event delivery and bound method invocation. The
three main elements of our implementation of II in Turing
Plus are:

1. A system event warehouse, a set of queues, is built to
receive all the announced events. When components
announce an event or an environment event is gener-
ated, it will be sent to the system event warehouse.

2. The dispatcher removes the events in the system event
warehouse and delivers them. Environment events will
be delivered immediately. Local events will be deliv-
ered according to the delivery policy. The dispatcher
delivers the events in the system event warehouse by
calling the bound component to receive the event.

3. Each component has a component event warehouse to
receive the events delivered by the dispatcher. The
component will invoke the bound method after it re-
ceives the delivered events.

Our modeling of II in Turing Plus thus divides event-
method bindings into two parts: the event-component bind-
ing information contained in the dispatcher and the event-
method binding information contained in the components.

System Event Warehouse

Receives and stores the events

announced by components

Component Event Warehouse

Receives and stores the events

delivered by the dispatcher

Set

Component Event Warehouse

Receives and stores the events

delivered by the dispatcher

Counter

event announcement

event

delivery

event

access

Dispatcher
Delivers the events in the system

events warehouse

event

delivery

Figure 4. Implicit method invocation for the
Set-Counter example in Turing Plus

4.2. The concurrency model

The concurrency model determines how to assign and
manage threads in the system. In [7], Garlan and Kherson-

sky propose several models of concurrency including a sin-
gle thread of control for all components and separate threads
of control for components.

In our implementation, we fix the concurrency model to
use a single thread for each component. Each component,
the event dispatcher, and the system have a thread defined
by a “run process”. For example, in Figure 5 we see that the
Set-Counter example has 4 threads. To ensure that the exe-
cution semantics of an IIL program in Turing Plus matches
its model checking semantics in SMV, all of the threads in
an Turing Plus implementation of an II system are synchro-
nized by theRendezvous monitor.

“run” process

Environment

event generation

“run” process

Check event queues

in the system event

warehouse, and

deliver events using

delivery policy.

Dispatcher

“run” process

Check event queues

in the component

event warehouse,

and invoke bound

methods.

Counter

Rendezvous

(monitor)

“run” process

Check event queues

in the component

event warehouse,

and invoke bound

methods.

Set

Figure 5. The II concurrency model for the
Set-Counter example in Turing Plus

4.3. Transformation of IIL to Turing Plus

The structure and syntax of Turing Plus programs is very
different from IIL programs. Figure 6 provides a summary
of how information in an IIL program is used in generating
each part of a Turing Plus program.

Our automated tool for transforming IIL to Turing Plus
consists of a set of formal transformation rules written in
TXL, a popular source-code transformation language that
has been used in numerous industrial and academic projects
over the past 10 years. Unfortunately, due to space restric-
tions we cannot include these rules in this paper. For exam-
ples of TXL rules see [18].

5. Translating IIL programs into SMV models

To model check systems written in IIL we use the exist-
ing approach we previously presented in [2]. This approach
is an extension of an II model checking system originally
developed by Garlan and Khersonsky in [6, 7]. This ap-
proach focuses on the automatic analysis of II by represent-
ing an II system in an XML parameterized representation.



Global

variable

declarations

Property

declarations

Constructor
IIL program

Component

modules

Dispatcher

modules

Global variable

declarations

Environment event

generation & system

setup

Turing Plus program

System constant

initialization & file

inclusion

Component

instantiations

Event-method

bindings
Dispatcher

declaration

Component

declarations

Event

declarations

Figure 6. Information integration in IIL to Turing Plus tran sformation

Once the XML input has been created, a Java transforma-
tion tool converts the information into a set of finite state
machines. This set of state machines can then be checked
using the Cadence SMV model checker [14]. We currently
check properties written in LTL.

A major drawback to our model checking work pre-
sented in [2] was that it was not completely automatic since
user interaction was required in developing the XML repre-
sentation. The approach presented in this paper overcomes
this deficiency and completely bridges the gap between ar-
tifacts by automating the process of generating finite state
models for software systems written in IIL.

5.1. Transformation of IIL to XML

Originally, due to the verbose nature of XML, IIL started
out as a replacement to the XML intermediate language that
would be easier to read and write. In addition to improving
the syntax, IIL evolved into a special-purpose language that
includes notational conveniences such as variable declara-
tions in methods, the use of for loops and the use of switch
statements.

As with the transformation to Turing Plus, our transfor-
mation from IIL to XML is done using an automatic trans-
formation tool written in TXL. The transformation from IIL
to XML involves two steps. In the first step the notational
conveniences of IIL are removed. For example, for loops
are unrolled. The program is also reorganized to follow the
program order required by the XML representation. After
the first step the IIL program is a statement-by-statement
match to the XML representation. The second step of the
transformation involves the syntax translation from IIL to
XML.

6. Evaluation

To evaluate our transformational framework we use three
examples: the Set-Counter example, the Active Badge Lo-
cation System (ABLS), and the Unmanned Vehicle Control
System (UVCS) [2]. Our evaluation of each example in-
volved modeling the example in the IIL language and veri-
fying that our transformation tools from IIL to Turing Plus
and from IIL to XML worked correctly.

Our evaluation shows that IIL programs are substantially
smaller in size than the corresponding Turing Plus imple-
mentation used for testing and both the XML and SMV rep-
resentations used for model checking. Table 1 summarizes
the results and illustrates the advantage of using a special-
purpose language convincingly. Note that the ABLS and
UVCS values in the table are the average of several ex-
ample systems implemented in IIL. Our evaluation of our
automatic transformation tools also demonstrated that the
semantics was well preserved during all of the transforma-
tions.

Example
IIL

(KB)

TP

(KB)

TP

(% IIL) 

XML 

(KB)

XML

(% IIL) 

SMV 

(KB)

SMV 

(% IIL) 

Set-Counter 2 13 650% 9 450% 24 1200% 

ABLS 3 13 444% 8 278% 23 767% 

UVCS 8 16 200% 21 263% 38 469% 

Overall 5 14 315% 13 281% 28 622% 

Table 1. File size comparison

7. Related work

Rapide [13] and Eventua [15] are two existing special-
purpose languages for event-based systems. Rapide is an



executable architecture definition language. It is intended
for modelling the architectures of concurrent and distributed
systems. Eventua is an object-oriented language that in-
cludes native support for events by including classes, fields,
a self keyword, and parameter passing for both methods
and events. An Eventua program can be transformed to the
%$ς-calculus, the underlying formalism, for execution.

Bandera [4] and the Spin model checker [12] provide
automatic translation from a general purpose programming
language to a standard model checker. Our approach differs
in that we limit ourselves to a special-purpose II language.

In the Cadena project at Kansas State University [9],
the model checker Bogor was used to analyze BoldStroke
– an event-based real-time middleware architecture devel-
oped by Boeing. BoldStroke was modeled using CORBA’s
Interface Definition Language. The model construction was
only partially automatic.

As an alternative to our approach, it would be interesting
to explore the use of Java to represent event-based systems
(e.g. using the Message-Driven Thread API for Java [1],
or publish/subscribe infrastructures like Elvin [16] or Siena
[3]) and to use Bandera for automatic model extraction and
analysis.

8. Conclusion

We have presented a framework for specifying, testing,
and model checking II systems. It consists of a high-level
language for specifying II systems and two fully automatic,
formally specified translations: one into the Turing Plus
language for execution and testing, and one into the input
language of a standard model checker [18]. The frame-
work demonstrates how automatic source code transforma-
tion can be used to combine the convenience of a special-
purpose language with the benefits of two complementary
V&V techniques: testing and model checking.

We believe that our work provides a useful test bed for
studying the relationship and possible synergies between
testing and model checking. In particular, it might al-
low us to investigate the following questions: To what ex-
tend can parallel testing be used to increase confidence in
model checking results and in the correctness of the model
checker? How can testing be used to simplify or optimize
the model checking? Can model checking be used to evalu-
ate the coverage offered by the test suite? Would it be useful
to integrate temporal logic properties into the testing effort
through, for instance, run-time safety analysis?

In addition to studying the relationship and possible syn-
ergies between testing and model checking, another future
direction of research is the extension of our framework for
use with more general forms of publish-subscribe systems.
For example, II systems that support dynamic bindings and
additional concurrency models.

References

[1] Message-driven thread API for the Java programming lan-
guage. Web page:http://www.mdthread.org.

[2] J. S. Bradbury and J. Dingel. Evaluating and improving the
automatic analysis of implicit invocation system. InProc. of
ESEC/FSE 2003, pages 78–87, Sept. 2003.

[3] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and
evaluation of a wide-area event notification service.ACM
Trans. on Computer Systems, 19(3):332–383, Aug. 2001.

[4] J. Corbett, M. Dwyer, J. Hatcliff, et al. Bandera: Extracting
finite-state models from Java source code. InProc. of the Int.
Conf. on Software Engineering, pages 439–448, June 2000.

[5] J. Cordy, T. Dean, A. Malton, and K. Schneider. Source
transformation in software engineering using the TXL trans-
formation system. Journal of Information and Software
Technology, 44(13):827–837, 2002.

[6] D. Garlan and S. Khersonsky. Model checking implicit-
invocation systems. InProc. Int. Work. on Software Spec-
ification and Design, Nov. 2000.

[7] D. Garlan, S. Khersonsky, and J. Kim. Model checking
publish-subscribe systems. InThe Int. SPIN Work. on Model
Checking of Software, May 2003.

[8] D. Garlan and C. Scott. Adding implicit invocation to tradi-
tional programming languages. InProc. of the Int. Conf. on
Software Engineering, pages 447–455, 1993.

[9] J. Hatcliff, X. Deng, M. B. Dwyer, G. Jung, and V. P. Ran-
ganath. Cadena: An integrated development, analysis, and
verification environment for component-based systems. In
Proc. of the Int. Conf. on Software Engineering, pages 160–
173, May 2003.

[10] R. Holt and J. Cordy. The Turing Plus report, CSRI, Univer-
sity of Toronto, 1987.

[11] R. Holt and D. Penny. The concurrent programming of op-
erating systems using the Turing Plus language, University
of Toronto, 1988.

[12] G. J. Holzmann and M. H. Smith. An automated verification
method for distributed systems software based on model ex-
traction. IEEE Trans. Softw. Eng., 28(4):364–377, 2002.

[13] D. C. Luckham and J. Vera. An event-based architecture
definition language.IEEE Trans. Softw. Eng., 21(9):717–
734, 1995.

[14] K. L. McMillan. The SMV Language. Cadence Berkeley
Labs, Mar. 1999.

[15] J. S. Patterson. An object-oriented event calculus. Technical
Report TR02-08, Computer Science, Iowa State University,
2002.

[16] B. Segall and D. Arnold. Elvin has left the building: A pub-
lish/subscribe notification service with quenching. InPro-
ceedings AUUG97, Sept. 1997.

[17] K. Sullivan and D. Notkin. Reconciling environment inte-
gration and software evolution. InProc. of SIGSOFT ‘90:
Symp. on Software Development Environments, Dec. 1990.

[18] H. Zhang. An implicit-invocation language and its imple-
mentation. Master’s thesis, Queen’s University, 2004.


