
Fundamenta Informaticae 76 (2006) 1–16 1

IOS Press

Intercode Regular Languages∗

Yo-Sub Han†‡

System Technology Division, Korea Institute of Science andTechnology

P.O.BOX 131, Cheongryang, Seoul, Korea, emmous@kist.re.kr

Kai Salomaa§

School of Computing, Queen’s University, Kingston, Ontario K7L 3N6, Canada

ksalomaa@cs.queensu.ca

Derick Wood¶

Department of Computer Science, The Hong Kong University ofScience and Technology

Clear Water Bay, Kowloon, Hong Kong SAR, dwood@cs.ust.hk

Abstract. Intercodes are a generalization of comma-free codes. Usingthe structural properties of
finite-state automata recognizing an intercode we develop apolynomial-time algorithm for determin-
ing whether or not a given regular languageL is an intercode. If the answer isyes, our algorithm
yields also the smallest indexk such thatL is ak-intercode.

Furthermore, we examine the prime intercode decompositionof intercode regular languages and
design an algorithm for the intercode primality test of an intercode recognized by a finite-state au-
tomaton. We also propose an algorithm that computes the prime intercode decomposition of an
intercode regular language in polynomial time. Finally, wedemonstrate that the prime intercode
decomposition need not be unique.

Keywords: regular languages, finite-state automata, intercodes, state-pair graphs, prime decompo-
sitions

∗Part of this research was carried out while Han and Salomaa were in HKUST.
†Han was supported by the Research Grants Council of Hong KongCompetitive Earmarked Research Grant HKUST6197/01E
and the KIST Tangible Space Initiative Grant 2E19020.
‡Address for correspondence: System Technology Division, Korea Institute of Science and Technology, P.O.BOX 131,
Cheongryang, Seoul, Korea
§Salomaa was supported by the Natural Sciences and Engineering Research Council of Canada Grant OGP0147224.
¶Wood was supported by the Research Grants Council of Hong Kong Competitive Earmarked Research Grant
HKUST6197/01E.

2 Y.-S. Han et al. / Intercode Regular Languages

1. Introduction

Finite-state automata (FAs) are the basic model used to represent regular languages in many applications.
FAs are essentially labeled directed graphs and each path from a start state to a final state spells out an
accepted string. There are two well-known families of FAs inthe literature: the Thompson automata [22]
and the position automata [8, 20]. One advantage of using such families of FAs is that these automata
preserve the structural properties of corresponding regular expressions. Caron and Ziadi [3] studied
the structural properties of the position automata and Giammarresi et al. [7] examined the structural
properties of the Thompson automata.

On the other hand, if we manipulate FAs, then these FAs easilylose certain structural properties; for
example, if we catenate a position automaton and a Thompson automaton, then the resulting automaton
does not preserve either the position automaton propertiesor the Thompson automaton properties. Nev-
ertheless, one property remains unchanged in FAs: a path from a start state to a final state spells out an
accepted string. The use ofstate-pair graphsrelies on this fact. Applications of state-pair graphs have
been investigated by the authors [12], or earlier by Bersteland Perrin [1], where this notion is called the
square of an automaton. Each node of a state-pair graph is a pair of states of a given FA and the directed
edges are labeled by alphabet symbols. We recall the formal definition in Section 3.

Codes play a crucial role in many areas such as information processing, data compression, cryptog-
raphy, information transmission and so on [15]. They are categorized with respect to different conditions
(for example,prefix-free, suffix-free, infix-freeor outfix-freecodes) according to the applications. The
theory of codes is closely related to formal languages: a code is alanguage. The conditions that classify
code types define proper subfamilies of families of formal languages. For regular languages, for example,
prefix-freeness defines the family of prefix-free regular languages, which is a proper subfamily of regular
languages. Most of the decision problems related to code properties are decidable for regular languages
whereas they often become undecidable for context-free languages [15]. Decidability of general code
properties is also investigated in the literature [6, 17].

While comma-free languages have not been studied to the extent of prefix-free languages in the
literature, the comma-free property was already introduced in 1958 [9]. Furthermore, Shyr and Yu [21]
introducedintercodes, as a generalization of comma-free codes, see also Yu [23]. Comma-free codes are
the intercodes of index one. Jürgensen et al. [16] have studied the decidability of the intercode property.
Fernau et al. [6] mentioned in the conclusion of their paper that “it would be nice to know more about the
(time or space) complexities of the decidable code properties”. Complexity questions have been raised
also by Berstel and Perrin [2].

Note that if an indexk is given, then we can fairly easily check whether or notL is an intercode
of index k. However, if no index is given, then the problem is not as straightforward. Jürgensen et
al. [16] established that it is decidable whether or not a given regular language is an intercode (of any
index). There the complexity of the decision algorithm is not discussed explicitly, but it is easy to verify
that an algorithm derived from the construction of the decidability proof is not a polynomial-time algo-
rithm in the general case where the input language is specified by a nondeterministic finite-state automa-
ton (NFA).

It is already shown that state-pair graphs are useful to solve decision problems for subfamilies of
regular languages [11, 12, 13]. Based on state-pair graphs,here we design an algorithm that determines
whether or not a given regular languageL is an intercode (of any index). The algorithm works in
polynomial time in the general case whereL is given as an NFA. Besides having better time complexity,

Y.-S. Han et al. / Intercode Regular Languages 3

the algorithm is conceptually easier to understand and implement compared with the algorithm derived
from Jürgensen et al. [16].

In Section 2, we define some basic notions. In Section 3, we investigate the decision problem of
intercodes and design a polynomial-time algorithm that, given an NFAA, determines whether or not the
languageL(A) is an intercode of any index. The algorithm relies on the structural properties ofA via
state-pair graphs. In Section 4, we develop anO(m6) time algorithm to compute a prime decomposition
of an intercode regular languageL wherem is the number of states of the minimal deterministic finite-
state automaton (DFA) forL. Note that it remains an open question whether prime decompositions
of general regular languages can be found efficiently [10, 19]. We also demonstrate that the prime
decomposition of an intercode is not, in general, unique. Incomparison, it is known that prefix codes
always have a unique decomposition where the components areprime prefix codes [5].

2. Preliminaries

Let Σ denote a finite alphabet andΣ∗ denote the set of all strings overΣ. A language overΣ is any
subset ofΣ∗. The symbol∅ denotes the empty language and the characterλ denotes the null string. The
cardinality of a finite setS is denoted by|S|.

An FA A is specified by a tuple(Q,Σ, δ, s, F), whereQ is a finite set of states,Σ is an input alphabet,
δ ⊆ Q × Σ × Q is a set of transitions,s ∈ Q is the start state andF ⊆ Q is a set of final states. When
F has only a single statef , we write this FA as(Q,Σ, δ, s, f) instead of(Q,Σ, δ, s, {f}) for simplicity.
An FA as defined above is, in general, nondeterministic (an NFA). An FA A is deterministic (a DFA) if
for all (q, a) ∈ Σ × Q, |{(q, a, q′) ∈ δ | q′ ∈ Q}| ≤ 1.

Then, the size|A| of A is |Q| + |δ|. A transition(p, a, q) in δ, wherep, q ∈ Q anda ∈ Σ, is an
out-transitionof p and anin-transition of q. Furthermore, in this case we say thatp is asource stateof
q andq is a target stateof p. A string x overΣ is accepted byA if there is a labeled path froms to a
state inF such that the labeled path spells out the stringx. Thus, the languageL(A) of an FAA is the
set of all strings that are spelled out by paths froms to a final state inF . We say thatA is non-returning
if the start state ofA does not have any in-transitions andA is non-exitingif the final state ofA does
not have any out-transitions. Note that if all final states ofA do not have out-transitions, without loss of
generality, we can assume thatA has only one final state by merging them. In the following, we always
assume thatA has onlyusefulstates; that is, each state ofA appears on some path from the start state to
some final state.

3. State-pair graphs and intercode regular languages

We first recall the definition of state-pair graphs and the definition of intercodes. Given a fixed indexk, it
is easy to determine whether a given regular languageL is an intercode of indexk, basically using closure
properties of regular languages. On the other hand, if an index is not specified, the decision problem
becomes more involved. In this section we design a polynomial-time algorithm for this problem.

Given an FAA = (Q,Σ, δ, s, F), we assign a unique number for each state inA from 1 to m, where
m is the number of states inA.

4 Y.-S. Han et al. / Intercode Regular Languages

Definition 3.1. (Han et al. [12])
Given an FAA = (Q,Σ, δ, s, F), we define the state-pair graphGA = (VG, EG), whereVG is a set of
nodes andEG is a set of labeled edges, as follows:

VG = {(i, j) | i, j ∈ Q} and

EG = {((i, j), a, (x, y)) | (i, a, x), (j, a, y) ∈ δ anda ∈ Σ}.

The crucial property of state-pair graphs is that if there isa stringw spelled out by two distinct paths
in A, for example, one path is fromi to x and the other path is fromj to y, then, there is a path from
(i, j) to (x, y) in GA that also spells out the same stringw. Note that state-pair graphs do not require the
given FAs to be deterministic.

Definition 3.2. (Jürgensen et al. [15])
A languageL is an intercode of indexk (or ak-intercode) ifLk+1 ∩ Σ+LkΣ+ = ∅. Generally,L is an
intercode ifL is an intercode of indexk, for somek.

First we consider the problem to determine whether or not a given regular languageL is ak-intercode,
for given k ≥ 1. We assume thatL is bifix-free1. Otherwise, we know immediately thatL is not an
intercode. We can check bifix-freeness of regular languagesefficiently [12]. Note that an FAA must be
non-exiting and non-returning forL(A) to be bifix-free and, thus, there is one start state and only one
final state. Furthermore,λ is not inL(A). If we want to construct an FAA2 for the languageL(A)L(A),
we can merge the final state of the first copy ofA and the start state of the second copy ofA. The FAA2

has2|Q| − 1 states and2|δ| transitions; namely,|A2| < 2|A|. We can repeat this procedure to construct
an FA for the catenation of severalAs. We useAk to denote the FA for the catenation ofk copies ofA
andAi to denote theith componentA in Ak, for 1 ≤ i ≤ k.

We now design an algorithm based on state-pair graphs that determines whether or not the language
of a given FAA = (Q,Σ, δ, s, f) is ak-intercode, for a givenk. We, first, catenatek+1 As as shown
in Fig. 1 and, thus, we havek+1 copies of states inA. We use(i, j) to denote the statei in Aj . For
example,(m, 1) in Fig. 1 is the final state ofA1 in Ak+1, wherem = |Q|; in fact, (m, 1) and(1, 2) are
the same state.

(1, 1) (m, k) (m, k+1)

Ak+1

(m, 1)

Figure 1. An example of an FA for the catenations ofk+1 As.

Lemma 3.1. Given an FAA = (Q,Σ, δ, s, f), L(A) is a k-intercode if and only if there is no path
from ((i, 1), (1, 1)) to ((j, g), (m,k)) such that1 < i < m and (j, g) 6= (m,k+1) in the state-pair
graphGAk+1 for Ak+1.

1A language isbifix-freeif it is prefix-free and suffix-free.

Y.-S. Han et al. / Intercode Regular Languages 5

Proof:
Given stringsu andv, we say thatu is astrict infix of v if u is an infix ofv but not a prefix or a suffix
of v. By the definition,L(A) is ak-intercode if and only if there is no stringu ∈ L(Ak) such thatu is a
strict infix of a stringv ∈ L(Ak+1).
=⇒ Assume that there is a path from((i, 1), (1, 1)) to ((j, g), (m,k)) in GAk+1 that spells out a stringw.
Thus, there exist two distinct paths, one of which is from(i, 1) to (j, g) and the other is from(1, 1) to
(m,k) and both spell outw in Ak+1. Note thatw ∈ L(Ak). SinceAk+1 has only useful states, there
should be a transition sequence from(1, 1) to (i, 1) that spells out a stringx that is notλ sinceA is
non-returning, and a transition sequence from(j, g) to (m,k+1) that spells out a stringy, which is
not λ since(j, g) 6= (m,k+1). This implies thatAk+1 acceptsxwy, andx andy are notλ. Then,
L(Ak+1) ∩ Σ+L(Ak)Σ+ 6= ∅ — a contradiction.
⇐= Assume thatL(A) is not ak-intercode. Then, there are two stringsu ∈ L(Ak) andv ∈ L(Ak+1)
such thatu is a strict infix ofv; namelyv = xuy, wherex andy are notλ. Note thatu = u1u2 · · · uk

and eachuh, for 1 ≤ h ≤ k, is spelled out byAh in Ak+1 and, thus, there is a path from(1, 1) to (m,k)
that spells outu in Ak+1. SinceAk+1 acceptsv = xuy, we reach some stateq after reading the prefixx
of v. Note thatq cannot be(1, 1) sinceA is non-returning.

(1, 1) (m, k) (m, k+1)

Ak+1

(i, 2)

x

(1, 1) (m, k) (m, k+1)(i, 1)

x′

Figure 2. Ifq is not inA1, then we can choose anotherx′ such thatv′ = x′uy′ hasu as a strict infix. Therefore,
we can always guarantee that there exists a stateq such thatq = (i, 1) for 1 < i < m.

It might be possible thatq is not in A1 but, say, inAh; namely,q = (i, h). However, if q is in
Ah 6= A1, then we can choose anotherx′ that is spelled out by a path from(1, h) to (i, h) in Ah such
thatv′ = x′uy′ as illustrated in Fig. 2.

Now we know thatq = (i, 1) and we show thati 6= m. If i = m, then this implies thatL(A) is not
prefix-free and, therefore, not an intercode since we need tospell outu from A2 and, eventually, there
are two strings accepted byAh and one of them is a prefix of the other as illustrated in Fig. 3.

Ak+1

(1, 1) (m, k) (m, k+1)(i, 1)

u1 u2

u1

Figure 3. A case wheni = m. Then, later we must reach a state, which is not a final state when reading each
uh of u from i and it follows thatL(A) is not prefix-free. This contradicts our assumption thatL(A) bifix-free.
Therefore,i < m.

Sinceu ∈ L(Ak) and v ∈ L(Ak+1), there should be two distinct sequences of transitions, one
of which is from (1, 1) to (m,k) and the other is from(i, 1) from (j, g), and both spell out the same

6 Y.-S. Han et al. / Intercode Regular Languages

string u. Now we prove that we are not at(m,k+1) after readingu from (i, 1). Sincey 6= λ and
Ak+1 is non-exiting, we must arrive at some stateq′ such thatq′ 6= (m,k+1). It follows that there is a
path from((i, 1), (1, 1)) to ((j, g), (m,k)) in GAk+1 such that1 < i < m and(j, g) 6= (m,k+1) — a
contradiction. ut

Based on Lemma 3.1, we design an algorithm for checking thek-intercode property as follows:

k-intercode (A, k)

/* A is an input FA andk is a fixed index. */

ConstructAk+1 by catenatingk+1 As

ConstructGAk+1 = (VG, EG) from Ak+1

for each node((i, 1), (1, 1)) in VG, where1 < i < m

DFS(((i, 1), (1, 1))) in GAk+1

if we meet a node((j, g), (m,k)) for any(j, g) 6= (m,k+1)

then outputL(A) is not a k-intercode

outputL(A) is a k-intercode

Figure 4. Ak-intercode checking algorithm for a given FA.

A sub-function DFS(((i, j), (i′, j′))) in Fig. 4 is a depth-first search (DFS) that starts at a node
((i, j), (i′ , j′)) in GAk+1. Although DFS(((i, j), (i′, j′))) is executed several times inside thefor loop
in the algorithm, each node inGAk+1 is visited at most twice and thus, the total time complexity of ex-
ploringGA is linear in the size ofGA. For details on DFS, we refer the reader to Cormen et al. [4]. Since
|Ak+1| = (k+1) ·O(|Q|+ |δ|), the construction ofG = (VG, EG) from Ak+1 takesk2 ·O(|Q|2 + |δ|2)
time in the worst-case. Therefore, the total running time ofthe algorithm in Fig. 4 isk2 ·O(|Q|2 + |δ|2)
and we obtain the following result.

Lemma 3.2. Given an FAA = (Q,Σ, δ, s, f) and an indexk, we can determine whether or notL(A) is
ak-intercode ink2 · O(|Q|2 + |δ|2) worst-case time.

If a regular language is given by a regular expressionE, then we can use the Thompson construc-
tion [22] that gives ak2 ·O(|E|2) runtime algorithm since the number of states and the number of transi-
tions of the Thompson automata are of the orderO(|E|). Note that if a given languageL is context-free,
then it is undecidable whether or notL is an intercode [16].

Next we continue with the question of deciding whether a given regular language is an intercode
when the index is not specified.

Y.-S. Han et al. / Intercode Regular Languages 7

Lemma 3.3. Given an FAA = (Q,Σ, δ, s, f), L(A) is not an intercode for any index if there is a
stringw that is spelled out by a path from(i, 1) to (i, p) in Ak+1 and a path from(1, 1) to (m,k) in Ak

for somek, wherei 6= 1, i 6= m and1 ≤ p ≤ k + 1.

Proof:

If a languageL is an intercode of indexk, thenL is an intercode of indexk+1 [21]. Because ofw,
L(A) is not ak-intercode and, thus,L(A) is not an intercode for any index less thank. We now show
thatL(A) is not a2k-intercode.

Sincew is spelled out by a path from(i, 1) to (i, p) in Ak+1, there is a path from(i, 1) to (i, 2p−1)
for ww in A2k+1. Sinceww is also accepted byA2k, it follows thatL(A) is not a2k-intercode. Using
this argument inductively, it follows thatL(A) is not an intercode of any, arbitrarily large, index. ut

Lemma 3.3 suggests that if we can find a stringw as in the lemma, then we can show thatL(A) is
not an intercode.

Lemma 3.4. Given an FAA = (Q,Σ, δ, s, f), L(A) is not an intercode for any indexk if L(A) is not a
(|Q|+1)-intercode.

Proof:
First, we show that ifL(A) is not an intercode of index|Q|+1, then there isc > 0 such thatL(A) is not
an intercode of index|Q|+1+c.

Let t = |Q|+1. SinceL(A) is not at-intercode, there are two stringsu ∈ L(At) andv ∈ L(At+1)
such thatu is a strict infix ofv; namely,v = xuy, andx andy are notλ.

A
t+1

p

x

A
t

u1 u2 u3 u4 u5 ut−1 utu =

Figure 5. An illustration of two stringsu andv, whereu is a strict infix ofv.

Once we readx in At+1, we reach a statep, which is not the start state sinceA is non-returning. We
now start readingu from p in Ar, r ≥ 1, of At+1 as shown in Fig. 5. Note thatu = u1u2u3 · · · ut, where
ui is spelled out byAi in At for 1 ≤ i ≤ t. Further, note thatui 6= λ, 1 ≤ i ≤ t, sinceL(A) is bifix-free.
When we have completed reading eachui, 1 ≤ i ≤ t, we keep a record of the states ofAt+1 that we
reach at that point. Since we havet = |Q|+1 such states, two of them must be the same statej of A as
shown in Fig. 6. Leta be the “distance” between the twojs inAt+1 in terms of the different components
A, that is, if the first occurrence ofj is a state ofAr, the second is a state ofAr+a. Let b be the number
of infixesui that the path between thejs spells out, for1 ≤ i ≤ t. Note thata ≥ 0 andb > 0. We use
u′′ = uiui+1 · · · ui+b−1 to denote the string spelled out by the path between the twojs.

8 Y.-S. Han et al. / Intercode Regular Languages

j

ui ui+1 ui+2 ui+3

j

uiui+1ui+2ui+3

Figure 6. An example of a case when statej appears twice while readingu in At+1 from x shown in Fig. 5. In
this case,a = 6 andb = 4.

Since the statej appears twice, we can define new stringsu′ = u1u2 · · · u
′′u′′ · · · ut andv′ = xu′y,

whereu′ ∈ L(At+b) andv′ ∈ L(At+1+a). Note thatu′ is a strict infix ofv′. This implies that

L(At+1+a) ∩ Σ+L(At+b)Σ+ 6= ∅. (1)

Based on (1), we show thatL(A) is not an intercode of indext+c, for somec > 0.

1. a = 0 : If a = 0, thenu′′ is spelled out by revisiting the same statej in Ai. From (1), we have

L(At+1) ∩ Σ+L(At+b)Σ+ 6= ∅

⇒ L(At+1+b) ∩ Σ+L(At+b)Σ+ 6= ∅, (b > 0).

Therefore,L(A) is not an intercode of indext+b and recall thatb > 0. Thus,L(A) is not an
intercode of indext+c when we choosec = b.

2. a, b > 0 : There are two cases to consider separately.

(a) a ≤ b : If L(At+1+a)∩Σ+L(At+b)Σ+ 6= ∅, then,L(At+1+b)∩Σ+L(At+b)Σ+ must be not
empty sincea ≤ b. We can choosec to beb, and nowL(A) is not an intercode of indext+c.

(b) a > b : Because of (1), we have two stringsu′ andv′ as shown in Fig. 7.

Now we removev′1 andv′t+1+a from v′ = v′1v
′
2 · · · v

′
t+1+a, wherev′i is an infix ofv′ that is

spelled out byAi of At+1+a for 1 ≤ i ≤ t + 1 + a. Let v′′ be the resulting string. Then,v′′

becomes a strict infix ofu′ as illustrated in Fig. 8.

We now have
L(At+b) ∩ Σ+L(At+a−1)Σ+ 6= ∅

⇒ L(At+1+(b−1)) ∩ Σ+L(At+(a−1))Σ+ 6= ∅.

Sincea−1 > b−1, this case is analogous to the previous case whena ≤ b. Therefore,L(A)
is not an intercode of indext+(a−1). Note that(a−1) > 1 and, thus, we can take(a−1) as
the valuec. Then,L(A) is not an intercode of indext+c.

To summarize, we have shown that ifL(A) is not an intercode of indext, t ≥ |Q| + 1, thenL(A) is
not an intercode of indext+c, for somec > 0. Consequently, ifL(A) is not an intercode of index|Q|+1,
thenL(A) is not an intercode of any index. ut

Y.-S. Han et al. / Intercode Regular Languages 9

Σ
+

Σ
+

A
t+b

A
t+1+a

u
′

v
′

Figure 7. An example for the proof: Two stringsu′ andv′ suchu′ ∈ L(At+b), v′ ∈ L(At+1+a) andu′ is a strict
infix of v′, anda > b. A gray part is spelled out byΣ+.

Σ
+

A
t+b

A
t+a−1

Σ
+

v
′′

Figure 8. An example for the proof: After we removev′1 andv′
k+1+a

from v′, v′′ becomes a strict infix ofu′.

Based on Lemmas 3.2 and 3.4, we obtain the following result.

Theorem 3.1. Given an FAA = (Q,Σ, δ, s, f), we can determine whether or notL(A) is an intercode
of indexk, for somek, in O(|Q|4 + |Q|2|δ|2) worst-case time.

Proof:
Using the algorithm in Fig. 4, we can check whether or notL(A) is a(|Q|+1)-intercode. The runtime is
O(|Q|4 + |Q|2|δ|2) from Lemma 3.2. IfL(A) is not a(|Q|+1)-intercode, thenL(A) is not an intercode
at all by Lemma 3.4. ut

Note that Theorem 3.1 gives a polynomial-time algorithm to decide the general intercode property,
and the input automatonA can be nondeterministic. The previously known decidability result [16] does
not yield a polynomial-time algorithm when the input automaton is nondeterministic. Moreover, as
an extension of Theorem 3.1, we can compute the smallest index k such thatL(A) is a k-intercode.
Assume thatL(A) is a (|Q|+1)-intercode for an FAA = (Q,Σ, δ, s, f) from Theorem 3.1. Since
intercodes form a proper hierarchy with respect to their index [15], we can repeat the checking procedure
for indices|Q|, |Q|−1, . . ., until we find the smallest index. However, instead of going down linearly, we
can search the smallest index using a binary technique as follows. We jump to the index|Q|/2. If L(A)
is a(|Q|/2)-intercode, then we jump to index|Q|/4. Otherwise, we jump back to index3|Q|/4. Based
on this technique, we establish the following result.

Theorem 3.2. Given an FAA = (Q,Σ, δ, s, f), in O(log |Q| · (|Q|4 + |Q|2|δ|2)) worst-case time, we
can determine whether or notL(A) is an intercode for some indexk > 0, and if the answer is positive
we can find the smallest indexl such thatL(A) is anl-intercode but not an(l−1)-intercode.

10 Y.-S. Han et al. / Intercode Regular Languages

4. Prime intercode regular languages and decomposition

Decomposition can be viewed as the reverse operation for catenation. LetL, L1 andL2 be languages.
If L has a decompositionL = L1 · L2, we callL1 andL2 factorsof L. Note that every languageL has
trivial decompositions,L = {λ} · L = L · {λ}. We call{λ} a trivial language. We define a languageL
to beprime if L 6= L1 · L2, for any non-trivial languagesL1 andL2. A prime decompositionof L is a
decompositionL = L1L2 · · ·Lk, whereL1, L2, · · · , Lk are prime languages andk ≥ 1.

Mateescu et al. [18, 19] showed that the primality of regularlanguages is decidable and the prime
decomposition of a regular language is not unique even for finite languages. Czyzowicz et al. [5] consid-
ered prefix-free regular languages and showed that the primeprefix-free decomposition for a prefix-free
regular languageL is always unique and the unique prime decomposition forL can be computed inO(m)
worst-case time, wherem is the size of the minimal DFA forL. Recently, Han et al. [12] investigated the
prime infix-free decomposition of infix-free regular languages and demonstrated that the prime infix-free
decomposition is not unique. On the other hand, it turns out that the prime outfix-free decomposition of
outfix-free regular languages is unique [14].

4.1. Prime intercode regular languages

In this section we examine prime intercode regular languages and decompositions of intercode regular
languages.

Definition 4.1. We define a regular languageL to be aprime intercodelanguage ifL 6= L1 ·L2, for any
non-trivial intercode regular languagesL1 andL2.

We define structural properties of DFAs that are useful in finding prime decompositions of intercodes.
Recall that since an intercode is necessarily bifix-free, wecan, without loss of generality, assume that a
DFA accepting an intercode is non-exiting and has only one final state.

Definition 4.2. Let A be a DFA such thatL(A) is an intercode. We define a stateb of A to be abridge
stateif the following conditions hold:

1. The stateb is neither a start nor the final state.

2. For any stringw ∈ L(A), its path inA must pass throughb at least once.

3. The stateb does not belong to any cycle ofA.

4. If we construct DFAsA1 andA2 as described in Definition 4.3, the languagesL(A1) andL(A2)
are intercodes.

We say that a stateb of a DFAA is acandidate bridge stateif it satisfies conditions 1., 2. and 3. of
Definition 4.2.

Definition 4.3. Given an intercode DFAA = (Q,Σ, δ, s, f) with a candidate bridge stateb ∈ Q, we can
partitionA into two subautomataA1 andA2, that share only the stateb, as follows:

• A1 = (Q1,Σ, δ1, s, b),

Q1 is the set of states that appear on some path froms to b in A including boths andb.

Y.-S. Han et al. / Intercode Regular Languages 11

δ1 is the set of transitions that appear on some path froms to b in A.

• A2 = (Q2,Σ, δ2, b, f),

Q2 is the set of states that appear on some path fromb to f in A including bothb andf .

δ2 is the set of transitions that appear on some path fromb to f in A.

Note that ifA does not satisfy the third condition in Definition 4.2, then for A1 andA2 as constructed
in Definition 4.3,L(A1) andL(A2) may not be intercodes since FAs for intercode regular languages must
be non-returning and non-exiting. Thus, condition 3. of Definition 4.2 follows from condition 4. We
include condition 3. in the definition for clarity.

The following result is crucial for finding efficiently primedecompositions of intercode regular lan-
guages.

Theorem 4.1. An intercode regular languageL is prime if and only if the minimal DFAA for L does
not have any bridge states.

Proof:
Let s denote the start state andf denote the final state inA. Note that since an intercode is always
bifix-free, the minimal DFA forL has only one final state.
=⇒ Assume thatA has a bridge stateq. Then, we can construct fromA two automataA1 andA2 as in
Definition 4.3 such thats is the start state andq is the final state ofA1 andq is the start state andf is the
final state ofA2. Then,L = L(A1) · L(A2), whereL(A1) andL(A2) are intercodes — a contradiction.
⇐= Assume thatL is not prime. Then,L can be represented asL1 ·L2, whereL1 andL2 are intercodes;
namely,L = L1 ·L2. Czyzowicz et al. [5] showed that given prefix-free languagesA,B andC such that
A = B ·C, A is regular if and only ifB andC are regular. Thus, ifL is regular, thenL1 andL2 must be
regular since all intercodes are prefix-free. LetA1 andA2 be minimal DFAs forL1 andL2, respectively.
SinceA1 andA2 are non-returning and non-exiting, there is only one start state and one final state for
A1 andA2. We catenateA1 andA2 by merging the final state ofA1 and the start state ofA2 as a single
stateq. Then, it is easy to verify that the catenated automaton is the minimal DFA forL(A1) ·L(A2) = L
and it has a bridge stateq — a contradiction. ut

4.2. Prime decomposition of intercode regular languages

Here we develop an algorithm to find the prime decomposition of an intercode regular language. The
prime decomposition of an intercode regular languageL representsL as a catenation of prime intercode
regular languages, and the rough idea is as follows. IfL is prime, thenL itself is a prime decomposition.
Thus, givenL, we first check whether or notL is prime and decomposeL if it is not prime. If L is not
prime, by Theorem 4.1, we can decomposeL into L(A1) andL(A2) at some bridge state. If bothL(A1)
andL(A2) are prime, a prime decomposition ofL is L(A1) ·L(A2). Otherwise, we repeat the preceding
procedure for a non-prime language.

Let B denote the set of bridge states for a given minimal DFAA. The number of states inB is at
mostm, wherem is the number of states inA. Note that once we partitionA at b ∈ B into A1 and
A2, then only states inB \ {b} can be bridge states ofA1 andA2. Therefore, we can determine the
primality of L(A) by checking whetherA has bridge states and can compute a prime decomposition of

12 Y.-S. Han et al. / Intercode Regular Languages

L(A) using these bridge states. Since there are at mostm bridge states in an intercode FAA, we can
compute a prime decomposition ofL(A) after a finite number of decompositions at bridge states.

Recall that if a stateq in A satisfies the first three conditions of Definition 4.2, we callq a candi-
date bridge state. We can compute the set of candidate bridgestates from a given minimal DFAA =
(Q,Σ, δ, s, f) for an intercode regular languageL(A) in linear time using the DFS [12].

Once we compute a setC of candidate bridge states fromA, we check for each statebi ∈ C whether
or not two subautomataA1 andA2 that are partitioned atbi are intercodes using the algorithm in Fig. 4. If
bothA1 andA2 are intercodes, thenL is not prime and we decomposeL into L(A1)·L(A2) and continue
to check and decompose each of the “subautomata”A1 andA2, respectively, using the remaining states
in C \ {bi}.

The correctness of the recursive procedure relies on the “ifand only if” condition given by Theo-
rem 4.1 that in turn relies on the minimality of the DFA’s in question. Hence we still need to verify the
following technical property.

Lemma 4.1. Let A = (Q,Σ, δ, s, f) be a DFA with a candidate bridge stateb ∈ Q. Let A1 andA2 be
the subautomata ofA that share the stateb and are constructed as in Definition 4.3. IfA is minimal, then
bothA1 andA2 are minimal DFAs.

Proof:
Assume thatA is minimal. We use forA1 andA2 the notations as in Definition 4.3. Since all states
of Ai are clearly reachable from the start state, it is sufficient to show that no two states inAi can be
equivalent, fori = 1, 2.

First consider distinct statesq1 and q2 of A2. SinceA is minimal there existsw ∈ Σ∗ that dis-
tinguishes between the statesq1 andq2. Without loss of generality, we assume thatδ(q1, w) = f and
δ(q2, w) 6= f since the other possibility is symmetric. Above it is possible thatδ(q2, w) is undefined.
Sinceb is a candidate bridge state ofA, A1 cannot have any out-transitions fromb. This means that the
computations alongw starting fromq1 andq2, respectively, are the same inA2 as inA. Hence,q1 andq2

are not equivalent inA2.
Second consider distinct statesp1 andp2 of A1. Again, sinceA is minimal there existsu ∈ Σ∗ such

that
δ(p1, u) = f andδ(p2, u) 6= f (2)

(or vice versa). By condition 2. of Definition 4.2, some prefixu1 of u takesp1 to the stateb. Now (2)
implies thatδ(p2, u1) 6= b. We note thatδ1(p1, u1) = δ(p1, u1) = b. If the computation ofA starting
from p2 on inputu1 does not pass through the stateb, we haveδ1(p2, u1) = δ(p2, u1), and otherwise
δ1(p2, u1) is undefined. In both casesp1 andp2 are inequivalent inA1. ut

Theorem 4.2. Given a minimal DFAA = (Q,Σ, δ, s, f) for an intercode regular languageL(A), we
can determine primality ofL(A) in O(m5) worst-case time and compute a prime decomposition ofL(A)
in O(m6) worst-case time, wherem is the number of states inA.

Proof:
First, we compute the setC of candidate bridge states in linear time in the size ofA [12]. Note that the
number of states inC is at mostm by definition, wherem = |Q|. For each state inC, we check whether
or not L(A1) andL(A2) are intercodes inO(m4) time. Note that a stateq of Ai, 1 ≤ i ≤ 2, can be

Y.-S. Han et al. / Intercode Regular Languages 13

a candidate bridge state only ifq was a candidate bridge state of the original DFAA. Thus, the total
running time for determining primality ofL(A) is O(m) × O(m4) = O(m5) in the worst-case.

Once we find a bridge statebj, we partitionA into A1 andA2 at bj and repeat the procedure for
L(A1) andL(A2), respectively, using the remaining candidate states inC \ {bj}. By Lemma 4.1,Ar is
a minimal DFA andL(Ar) is an intercode sincebj was a bridge state,r = 1, 2. Thus, by Theorem 4.1,
L(Ar) is prime if and only ifAr does not have any bridge states,r = 1, 2.

We continue this partitioning until the component languages are prime intercodes. Therefore, the
total time complexity for computing a prime decomposition of L(A) is O(m6) in the worst-case. ut

The algorithm for computing a prime decomposition forL(A) in Theorem 4.2 looks similar to the
algorithm [12] for the infix-free regular language case. However, there is one crucial difference between
these two algorithms because of the different closure properties of the two families. Many classes of
codes are closed under catenation; examples include the prefix-free, bifix-free, infix-free and outfix-free
codes. Based on this observation, Han et al. [12] speeded up the algorithm for the infix-free case by a
linear factor. In contrast, intercodes are not closed undercatenation.

Theorem 4.3. The family of intercodes is closed under intersection but not closed under catenation,
union, complement or star.

Proof:
We consider here only the case of catenation. The other casescan be proved straightforwardly.

Assume thatL is an intercode and letL0 be the the square ofL; namely,L0 = LL. If L0 is an
intercode, thenLk+1

0 ∩ Σ+Lk
0Σ

+ must be∅ for some integerk ≥ 1. However, we observe that for any
k ≥ 1,

Lk+1
0 ∩ Σ+Lk

0Σ
+ = LL2kL ∩ Σ+L2kΣ+ 6= ∅.

Therefore,L0 is not an intercode (of any index) and the class of intercodesis not closed under catenation.
ut

In the proof of Theorem 4.2 we observed that all bridge statesof the component automataAi, 1 ≤
i ≤ 2, must be bridge states also in the original DFAA. However, the implication does not hold in the
converse direction and sometimes a bridge statebi ∈ C of a minimal DFAA is no longer a bridge state
after a decomposition at some other bridge statebj of A. Fig. 9 illustrates this situation.

The example of Fig. 9 hints at the possibility that the prime intercode decomposition might not be
unique. Czyzowicz et al. [5] demonstrated that the prime prefix-free decomposition for a prefix-free
regular language is unique; this can be extended for the suffix-free and bifix-free cases. Since intercodes
are a subfamily of bifix-free languages, it is natural to investigate the uniqueness of prime intercode
decompositions.

Example 4.1. The following example shows that the prime intercode decomposition need not be unique.

L(a(bcb + c)a) =

{

L1(a(bcb + c)) · L2(a).

L2(a) · L3((bcb + c)a).

The languageL is an intercode but not prime and it has two different prime decompositions, where
L1, L2 andL3 are prime intercodes.

14 Y.-S. Han et al. / Intercode Regular Languages

b1 b2
a b c b a

c

b1
a b c b a

c

A

A1 A2

Figure 9. Statesb1 andb2 are bridge states forA. However, once we decomposeA at b2, thenb1 is no longer a
bridge state inA1 sinceb1 now violates the fourth condition in Definition 4.2. Similarly, if we decomposeA atb1,
thenb2 is not a bridge state.

In Example 4.1,L,L1, L2 andL3 are all 1-intercodes. However,L′ = (bcb + c) is not an intercode
for any index by Lemma 3.3 sincecbcb ∈ L(A2) is spelled out by a path from(2, 1) to (2, 3) in A3; see
Fig. 10 for an example. Therefore, the prime intercode decomposition is not unique.

b c b

c

b c b

c

b c b

c

2 2

A1 A2 A3

Figure 10. Given a minimal DFAA for L′ = (bcb + c), we constructA3 as a catenation of threeAs. The dotted
line represents a path from(2, 1) to (2, 3) that spells outcbcb ∈ L(A2).

5. Conclusion

There has been much research on formal languages aspects of codes. With this viewpoint, we have
investigated regular intercodes, their decision properties and prime decompositions.

Given a regular languageL and a fixed indexk, it is not difficult to determine whether or notL
is an intercode of indexk. On the other hand, if no index is given, then the decision problem is not
as straightforward. We have given an algorithm that determines in polynomial time whether or not the
languageL(A) of a given NFAA is an intercode (of any index). The algorithm relies, via state-pair
graphs, on the structural properties of a given NFA. Furthermore, we have shown that in the positive
case we can compute, in polynomial time as well, the smallestindex for whichL is an intercode. IfL is
defined by a regular expressionE, then we can use the Thompson construction [22] that guarantees that
the size of the corresponding automaton is linear in the sizeof E.

We have provided an algorithm for determining the primalityof an intercode regular language and
also provided an efficient algorithm for computing a prime intercode decomposition. Finally, we have
presented an example that shows the non-uniqueness of primeintercode decompositions.

Y.-S. Han et al. / Intercode Regular Languages 15

Acknowledgements

We thank the anonymous referees for useful suggestions.

References

[1] Berstel, J., Perrin, D.:Theory of Codes,Academic Press, Inc., 1985.

[2] Berstel, J., Perrin, D.: Trends in the theory of codes,EATCSBulletin, 29, 1986, 84–95.

[3] Caron, P., Ziadi, D.: Characterization of Glushkov automata,Theoretical Computer Science,233(1–2), 2000,
75–90.

[4] Cormen, T.H., Leiserson, C.E., Rivest, R.L.,Stein, C.:Introduction to Algorithms,McGraw-Hill Higher
Education, 2001.

[5] Czyzowicz, J., Fraczak, W., Pelc, A., Rytter, W.: Linear-time prime decomposition of regular prefix codes,
International Journal of Foundations of Computer Science,14, 2003, 1019–1032.

[6] Fernau, H., Reinhardt, K., Staiger, L.: Decidability ofcode properties,Proc. 4th International Conference
Developments in Language Theory,(G. Rozenberg, W. Thomas, Eds.) World Scientific, Singapore, 2000,
153–160.

[7] Giammarresi, D., Ponty, J.-L., Wood, D., Ziadi, D.: A characterization of Thompson digraphs,Discrete
Applied Mathematics, 134, 2004, 317–337.

[8] Glushkov, V.: The abstract theory of automata,Russian Mathematical Surveys, 16, 1961, 1–53.

[9] Golomb, S., Gordon, B.,Welch, L.: Comma-free codes,The Canadian Journal of Mathematics,10, 1958,
202–209.

[10] Han, Y.-S., Salomaa, K., Wood, D.: Prime decompositions of regular languages,Proceedings of DLT’06,
LNCS 4036, Springer-Verlag, 2006, 145–155.

[11] Han, Y.-S., Wang, Y., Wood, D.: Prefix-free regular-expression matching,Proceedings of CPM’05, LNCS
3537, Springer-Verlag, 2005, 298–309.

[12] Han, Y.-S., Wang, Y., Wood, D.: Infix-free regular expressions and languages,International Journal of
Foundations of Computer Science,17(2), 2006, 379–393.

[13] Han, Y.-S., Wood, D.: Overlap-free regular languages,Proceedings of COCOON’06,LNCS 4112, Springer-
Verlag, 2006, 469–478.

[14] Han, Y.-S., Wood, D.: Outfix-free regular languages andprime outfix-free decomposition,Proceedings of
ICTAC’05, LNCS 3722, Springer-Verlag, 2005, 96–109.

[15] Jürgensen, H., Konstantinidis, S.: Codes, in:Word, Language, Grammar, volume 1 ofHandbook of Formal
Languages(G. Rozenberg, A. Salomaa, Eds.), Springer-Verlag, 1997, 511–607.

[16] Jürgensen, H., Salomaa, K., Yu, S.: Decidability of the intercode property,Elektronische Informationsverar-
beitung und Kybernetik,29(6), 1993, 375–380.

[17] Jürgensen, H., Salomaa, K., Yu, S.: Transducers and the decidability of independence in free monoids,
Theoretical Computer Science,134, 1994, 107–117.

[18] Mateescu, A., Salomaa, A., Yu, S.: On the decompositionof finite languages, Technical Report 222, TUCS,
1998.

16 Y.-S. Han et al. / Intercode Regular Languages

[19] Mateescu, A., Salomaa, A., Yu, S.: Factorizations of languages and commutativity conditions,Acta Cyber-
netica,15(3), 2002, 339–351.

[20] McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata,IEEE Transactions on
Electronic Computers,9, 1960, 39–47.

[21] Shyr, H., Yu, S.S.: Intercodes and some related properties, Soochow J. Math., 16(1), 1990, 95–107.

[22] Thompson, K.: Regular expression search algorithm,Communications of the ACM,11, 1968, 419–422.

[23] Yu, S.S.: A characterization of intercodes,International Journal of Computer Mathematics,36, 1990, 39–45.

